algebra.homology.homological_complexMathlib.Algebra.Homology.HomologicalComplex

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -92,7 +92,7 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     C₁ = C₂ := by
   cases C₁
   cases C₂
-  dsimp at h_X 
+  dsimp at h_X
   subst h_X
   simp only [true_and_iff, eq_self_iff_true, heq_iff_eq]
   ext i j
@@ -428,7 +428,7 @@ def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.pt j :=
         dsimp [ComplexShape.prev]
         rw [dif_neg]; push_neg; intro i hi
         have : c.prev j = i := c.prev_eq' hi
-        rw [this] at h ; contradiction)
+        rw [this] at h; contradiction)
 #align homological_complex.X_prev_iso_self HomologicalComplex.xPrevIsoSelf
 -/
 
@@ -455,7 +455,7 @@ def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.pt i :=
         dsimp [ComplexShape.next]
         rw [dif_neg]; rintro ⟨j, hj⟩
         have : c.next i = j := c.next_eq' hj
-        rw [this] at h ; contradiction)
+        rw [this] at h; contradiction)
 #align homological_complex.X_next_iso_self HomologicalComplex.xNextIsoSelf
 -/
 
@@ -739,7 +739,7 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
     d := fun i j => if h : i = j + 1 then eqToHom (by subst h) ≫ d j else 0
     shape' := fun i j w => by rw [dif_neg (Ne.symm w)]
     d_comp_d' := fun i j k hij hjk => by
-      dsimp at hij hjk ; substs hij hjk
+      dsimp at hij hjk; substs hij hjk
       simp only [category.id_comp, dif_pos rfl, eq_to_hom_refl]
       exact sq k }
 #align chain_complex.of ChainComplex.of
@@ -1072,7 +1072,6 @@ end OfHom
 
 section Mk
 
-#print CochainComplex.MkStruct /-
 /-- Auxiliary structure for setting up the recursion in `mk`.
 This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
 results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
@@ -1084,16 +1083,13 @@ structure MkStruct where
   d₁ : X₁ ⟶ X₂
   s : d₀ ≫ d₁ = 0
 #align cochain_complex.mk_struct CochainComplex.MkStruct
--/
 
 variable {V}
 
-#print CochainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
 def MkStruct.flat (t : MkStruct V) : Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align cochain_complex.mk_struct.flat CochainComplex.MkStruct.flat
--/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
   (succ :
Diff
@@ -141,7 +141,12 @@ theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down
 
 #print ChainComplex.next_nat_zero /-
 @[simp]
-theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by classical
+theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by
+  classical
+  refine' dif_neg _
+  push_neg
+  intro
+  apply Nat.noConfusion
 #align chain_complex.next_nat_zero ChainComplex.next_nat_zero
 -/
 
@@ -173,7 +178,12 @@ theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
 
 #print CochainComplex.prev_nat_zero /-
 @[simp]
-theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by classical
+theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by
+  classical
+  refine' dif_neg _
+  push_neg
+  intro
+  apply Nat.noConfusion
 #align cochain_complex.prev_nat_zero CochainComplex.prev_nat_zero
 -/
 
Diff
@@ -141,12 +141,7 @@ theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down
 
 #print ChainComplex.next_nat_zero /-
 @[simp]
-theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by
-  classical
-  refine' dif_neg _
-  push_neg
-  intro
-  apply Nat.noConfusion
+theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by classical
 #align chain_complex.next_nat_zero ChainComplex.next_nat_zero
 -/
 
@@ -178,12 +173,7 @@ theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
 
 #print CochainComplex.prev_nat_zero /-
 @[simp]
-theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by
-  classical
-  refine' dif_neg _
-  push_neg
-  intro
-  apply Nat.noConfusion
+theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by classical
 #align cochain_complex.prev_nat_zero CochainComplex.prev_nat_zero
 -/
 
Diff
@@ -795,7 +795,6 @@ end OfHom
 
 section Mk
 
-#print ChainComplex.MkStruct /-
 /-- Auxiliary structure for setting up the recursion in `mk`.
 This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
 results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
@@ -807,16 +806,13 @@ structure MkStruct where
   d₁ : X₂ ⟶ X₁
   s : d₁ ≫ d₀ = 0
 #align chain_complex.mk_struct ChainComplex.MkStruct
--/
 
 variable {V}
 
-#print ChainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
 def MkStruct.flat (t : MkStruct V) : Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align chain_complex.mk_struct.flat ChainComplex.MkStruct.flat
--/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s : d₁ ≫ d₀ = 0)
   (succ :
Diff
@@ -876,11 +876,11 @@ theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 0 = d₀ := by
 #align chain_complex.mk_d_1_0 ChainComplex.mk_d_1_0
 -/
 
-#print ChainComplex.mk_d_2_0 /-
+#print ChainComplex.mk_d_2_1 /-
 @[simp]
-theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ := by
+theorem mk_d_2_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ := by
   change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁; rw [if_pos rfl, category.id_comp]
-#align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_0
+#align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_1
 -/
 
 #print ChainComplex.mk' /-
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Scott Morrison
 -/
-import Mathbin.Algebra.Homology.ComplexShape
-import Mathbin.CategoryTheory.Subobject.Limits
-import Mathbin.CategoryTheory.GradedObject
+import Algebra.Homology.ComplexShape
+import CategoryTheory.Subobject.Limits
+import CategoryTheory.GradedObject
 
 #align_import algebra.homology.homological_complex from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
 
Diff
@@ -68,8 +68,6 @@ structure HomologicalComplex (c : ComplexShape ι) where
 
 namespace HomologicalComplex
 
-restate_axiom shape'
-
 attribute [simp] shape
 
 variable {V} {c : ComplexShape ι}
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Scott Morrison
-
-! This file was ported from Lean 3 source module algebra.homology.homological_complex
-! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Homology.ComplexShape
 import Mathbin.CategoryTheory.Subobject.Limits
 import Mathbin.CategoryTheory.GradedObject
 
+#align_import algebra.homology.homological_complex from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
+
 /-!
 # Homological complexes.
 
Diff
@@ -100,7 +100,7 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
   dsimp at h_X 
   subst h_X
   simp only [true_and_iff, eq_self_iff_true, heq_iff_eq]
-  ext (i j)
+  ext i j
   by_cases hij : c.rel i j
   · simpa only [id_comp, eq_to_hom_refl, comp_id] using h_d i j hij
   · rw [C₁_shape' i j hij, C₂_shape' i j hij]
Diff
@@ -77,6 +77,7 @@ attribute [simp] shape
 
 variable {V} {c : ComplexShape ι}
 
+#print HomologicalComplex.d_comp_d /-
 @[simp, reassoc]
 theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k = 0 :=
   by
@@ -86,7 +87,9 @@ theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k
     · rw [C.shape j k hjk, comp_zero]
   · rw [C.shape i j hij, zero_comp]
 #align homological_complex.d_comp_d HomologicalComplex.d_comp_d
+-/
 
+#print HomologicalComplex.ext /-
 theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     (h_d :
       ∀ i j : ι,
@@ -102,6 +105,7 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
   · simpa only [id_comp, eq_to_hom_refl, comp_id] using h_d i j hij
   · rw [C₁_shape' i j hij, C₂_shape' i j hij]
 #align homological_complex.ext HomologicalComplex.ext
+-/
 
 end HomologicalComplex
 
@@ -125,16 +129,20 @@ abbrev CochainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type
 
 namespace ChainComplex
 
+#print ChainComplex.prev /-
 @[simp]
 theorem prev (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.down α).prev i = i + 1 :=
   (ComplexShape.down α).prev_eq' rfl
 #align chain_complex.prev ChainComplex.prev
+-/
 
+#print ChainComplex.next /-
 @[simp]
 theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down α).next i = i - 1 :=
   (ComplexShape.down α).next_eq' <| sub_add_cancel _ _
 #align chain_complex.next ChainComplex.next
+-/
 
 #print ChainComplex.next_nat_zero /-
 @[simp]
@@ -158,16 +166,20 @@ end ChainComplex
 
 namespace CochainComplex
 
+#print CochainComplex.prev /-
 @[simp]
 theorem prev (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.up α).prev i = i - 1 :=
   (ComplexShape.up α).prev_eq' <| sub_add_cancel _ _
 #align cochain_complex.prev CochainComplex.prev
+-/
 
+#print CochainComplex.next /-
 @[simp]
 theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.up α).next i = i + 1 :=
   (ComplexShape.up α).next_eq' rfl
 #align cochain_complex.next CochainComplex.next
+-/
 
 #print CochainComplex.prev_nat_zero /-
 @[simp]
@@ -204,6 +216,7 @@ structure Hom (A B : HomologicalComplex V c) where
 #align homological_complex.hom HomologicalComplex.Hom
 -/
 
+#print HomologicalComplex.Hom.comm /-
 @[simp, reassoc]
 theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
     f.f i ≫ B.d i j = A.d i j ≫ f.f j :=
@@ -212,6 +225,7 @@ theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
   · exact f.comm' i j hij
   rw [A.shape i j hij, B.shape i j hij, comp_zero, zero_comp]
 #align homological_complex.hom.comm HomologicalComplex.Hom.comm
+-/
 
 instance (A B : HomologicalComplex V c) : Inhabited (Hom A B) :=
   ⟨{ f := fun i => 0 }⟩
@@ -241,35 +255,45 @@ instance : Category (HomologicalComplex V c)
 
 end
 
+#print HomologicalComplex.id_f /-
 @[simp]
 theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.pt i) :=
   rfl
 #align homological_complex.id_f HomologicalComplex.id_f
+-/
 
+#print HomologicalComplex.comp_f /-
 @[simp]
 theorem comp_f {C₁ C₂ C₃ : HomologicalComplex V c} (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     (f ≫ g).f i = f.f i ≫ g.f i :=
   rfl
 #align homological_complex.comp_f HomologicalComplex.comp_f
+-/
 
+#print HomologicalComplex.eqToHom_f /-
 @[simp]
 theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι) :
     HomologicalComplex.Hom.f (eqToHom h) n =
       eqToHom (congr_fun (congr_arg HomologicalComplex.x h) n) :=
   by subst h; rfl
 #align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_f
+-/
 
+#print HomologicalComplex.hom_f_injective /-
 -- We'll use this later to show that `homological_complex V c` is preadditive when `V` is.
 theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
     Function.Injective fun f : Hom C₁ C₂ => f.f := by tidy
 #align homological_complex.hom_f_injective HomologicalComplex.hom_f_injective
+-/
 
 instance : HasZeroMorphisms (HomologicalComplex V c) where Zero C D := ⟨{ f := fun i => 0 }⟩
 
+#print HomologicalComplex.zero_f /-
 @[simp]
 theorem zero_f (C D : HomologicalComplex V c) (i : ι) : (0 : C ⟶ D).f i = 0 :=
   rfl
 #align homological_complex.zero_apply HomologicalComplex.zero_f
+-/
 
 open scoped ZeroObject
 
@@ -282,9 +306,11 @@ noncomputable def zero [HasZeroObject V] : HomologicalComplex V c
 #align homological_complex.zero HomologicalComplex.zero
 -/
 
+#print HomologicalComplex.isZero_zero /-
 theorem isZero_zero [HasZeroObject V] : IsZero (zero : HomologicalComplex V c) := by
   refine' ⟨fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩ <;> ext
 #align homological_complex.is_zero_zero HomologicalComplex.isZero_zero
+-/
 
 instance [HasZeroObject V] : HasZeroObject (HomologicalComplex V c) :=
   ⟨⟨zero, isZero_zero⟩⟩
@@ -292,10 +318,12 @@ instance [HasZeroObject V] : HasZeroObject (HomologicalComplex V c) :=
 noncomputable instance [HasZeroObject V] : Inhabited (HomologicalComplex V c) :=
   ⟨zero⟩
 
+#print HomologicalComplex.congr_hom /-
 theorem congr_hom {C D : HomologicalComplex V c} {f g : C ⟶ D} (w : f = g) (i : ι) :
     f.f i = g.f i :=
   congr_fun (congr_arg Hom.f w) i
 #align homological_complex.congr_hom HomologicalComplex.congr_hom
+-/
 
 section
 
@@ -336,6 +364,7 @@ open scoped Classical
 
 noncomputable section
 
+#print HomologicalComplex.d_comp_eqToHom /-
 /-- If `C.d i j` and `C.d i j'` are both allowed, then we must have `j = j'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -346,7 +375,9 @@ theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
   have P : ∀ h : j' = j, C.d i j' ≫ eq_to_hom (congr_arg C.X h) = C.d i j := by rintro rfl; simp
   apply P
 #align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHom
+-/
 
+#print HomologicalComplex.eqToHom_comp_d /-
 /-- If `C.d i j` and `C.d i' j` are both allowed, then we must have `i = i'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -357,20 +388,25 @@ theorem eqToHom_comp_d {i i' j : ι} (rij : c.Rel i j) (rij' : c.Rel i' j) :
   have P : ∀ h : i = i', eq_to_hom (congr_arg C.X h) ≫ C.d i' j = C.d i j := by rintro rfl; simp
   apply P
 #align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_d
+-/
 
+#print HomologicalComplex.kernel_eq_kernel /-
 theorem kernel_eq_kernel [HasKernels V] {i j j' : ι} (r : c.Rel i j) (r' : c.Rel i j') :
     kernelSubobject (C.d i j) = kernelSubobject (C.d i j') :=
   by
   rw [← d_comp_eq_to_hom C r r']
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_eq_kernel HomologicalComplex.kernel_eq_kernel
+-/
 
+#print HomologicalComplex.image_eq_image /-
 theorem image_eq_image [HasImages V] [HasEqualizers V] {i i' j : ι} (r : c.Rel i j)
     (r' : c.Rel i' j) : imageSubobject (C.d i j) = imageSubobject (C.d i' j) :=
   by
   rw [← eq_to_hom_comp_d C r r']
   apply image_subobject_iso_comp
 #align homological_complex.image_eq_image HomologicalComplex.image_eq_image
+-/
 
 section
 
@@ -444,66 +480,88 @@ abbrev dFrom (i : ι) : C.pt i ⟶ C.xNext i :=
 #align homological_complex.d_from HomologicalComplex.dFrom
 -/
 
+#print HomologicalComplex.dTo_eq /-
 theorem dTo_eq {i j : ι} (r : c.Rel i j) : C.dTo j = (C.xPrevIso r).Hom ≫ C.d i j :=
   by
   obtain rfl := c.prev_eq' r
   exact (category.id_comp _).symm
 #align homological_complex.d_to_eq HomologicalComplex.dTo_eq
+-/
 
+#print HomologicalComplex.dTo_eq_zero /-
 @[simp]
 theorem dTo_eq_zero {j : ι} (h : ¬c.Rel (c.prev j) j) : C.dTo j = 0 :=
   C.shape _ _ h
 #align homological_complex.d_to_eq_zero HomologicalComplex.dTo_eq_zero
+-/
 
+#print HomologicalComplex.dFrom_eq /-
 theorem dFrom_eq {i j : ι} (r : c.Rel i j) : C.dFrom i = C.d i j ≫ (C.xNextIso r).inv :=
   by
   obtain rfl := c.next_eq' r
   exact (category.comp_id _).symm
 #align homological_complex.d_from_eq HomologicalComplex.dFrom_eq
+-/
 
+#print HomologicalComplex.dFrom_eq_zero /-
 @[simp]
 theorem dFrom_eq_zero {i : ι} (h : ¬c.Rel i (c.next i)) : C.dFrom i = 0 :=
   C.shape _ _ h
 #align homological_complex.d_from_eq_zero HomologicalComplex.dFrom_eq_zero
+-/
 
+#print HomologicalComplex.xPrevIso_comp_dTo /-
 @[simp, reassoc]
 theorem xPrevIso_comp_dTo {i j : ι} (r : c.Rel i j) : (C.xPrevIso r).inv ≫ C.dTo j = C.d i j := by
   simp [C.d_to_eq r]
 #align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dTo
+-/
 
+#print HomologicalComplex.xPrevIsoSelf_comp_dTo /-
 @[simp, reassoc]
 theorem xPrevIsoSelf_comp_dTo {j : ι} (h : ¬c.Rel (c.prev j) j) :
     (C.xPrevIsoSelf h).inv ≫ C.dTo j = 0 := by simp [h]
 #align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dTo
+-/
 
+#print HomologicalComplex.dFrom_comp_xNextIso /-
 @[simp, reassoc]
 theorem dFrom_comp_xNextIso {i j : ι} (r : c.Rel i j) : C.dFrom i ≫ (C.xNextIso r).Hom = C.d i j :=
   by simp [C.d_from_eq r]
 #align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIso
+-/
 
+#print HomologicalComplex.dFrom_comp_xNextIsoSelf /-
 @[simp, reassoc]
 theorem dFrom_comp_xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) :
     C.dFrom i ≫ (C.xNextIsoSelf h).Hom = 0 := by simp [h]
 #align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelf
+-/
 
+#print HomologicalComplex.dTo_comp_dFrom /-
 @[simp]
 theorem dTo_comp_dFrom (j : ι) : C.dTo j ≫ C.dFrom j = 0 :=
   C.d_comp_d _ _ _
 #align homological_complex.d_to_comp_d_from HomologicalComplex.dTo_comp_dFrom
+-/
 
+#print HomologicalComplex.kernel_from_eq_kernel /-
 theorem kernel_from_eq_kernel [HasKernels V] {i j : ι} (r : c.Rel i j) :
     kernelSubobject (C.dFrom i) = kernelSubobject (C.d i j) :=
   by
   rw [C.d_from_eq r]
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_from_eq_kernel HomologicalComplex.kernel_from_eq_kernel
+-/
 
+#print HomologicalComplex.image_to_eq_image /-
 theorem image_to_eq_image [HasImages V] [HasEqualizers V] {i j : ι} (r : c.Rel i j) :
     imageSubobject (C.dTo j) = imageSubobject (C.d i j) :=
   by
   rw [C.d_to_eq r]
   apply image_subobject_iso_comp
 #align homological_complex.image_to_eq_image HomologicalComplex.image_to_eq_image
+-/
 
 end
 
@@ -541,18 +599,22 @@ def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
 -/
 
+#print HomologicalComplex.Hom.isoOfComponents_app /-
 @[simp]
 theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) (i : ι) :
     isoApp (isoOfComponents f hf) i = f i := by ext; simp
 #align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_app
+-/
 
+#print HomologicalComplex.Hom.isIso_of_components /-
 theorem isIso_of_components (f : C₁ ⟶ C₂) [∀ n : ι, IsIso (f.f n)] : IsIso f :=
   by
   convert is_iso.of_iso (HomologicalComplex.Hom.isoOfComponents (fun n => as_iso (f.f n)) (by tidy))
   ext n
   rfl
 #align homological_complex.hom.is_iso_of_components HomologicalComplex.Hom.isIso_of_components
+-/
 
 /-! Lemmas relating chain maps and `d_to`/`d_from`. -/
 
@@ -564,12 +626,14 @@ abbrev prev (f : Hom C₁ C₂) (j : ι) : C₁.xPrev j ⟶ C₂.xPrev j :=
 #align homological_complex.hom.prev HomologicalComplex.Hom.prev
 -/
 
+#print HomologicalComplex.Hom.prev_eq /-
 theorem prev_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.prev j = (C₁.xPrevIso w).Hom ≫ f.f i ≫ (C₂.xPrevIso w).inv :=
   by
   obtain rfl := c.prev_eq' w
   simp only [X_prev_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id]
 #align homological_complex.hom.prev_eq HomologicalComplex.Hom.prev_eq
+-/
 
 #print HomologicalComplex.Hom.next /-
 /-- `f.next i` is `f.f j` if there is some `r i j`, and `f.f j` otherwise. -/
@@ -578,22 +642,28 @@ abbrev next (f : Hom C₁ C₂) (i : ι) : C₁.xNext i ⟶ C₂.xNext i :=
 #align homological_complex.hom.next HomologicalComplex.Hom.next
 -/
 
+#print HomologicalComplex.Hom.next_eq /-
 theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.next i = (C₁.xNextIso w).Hom ≫ f.f j ≫ (C₂.xNextIso w).inv :=
   by
   obtain rfl := c.next_eq' w
   simp only [X_next_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id]
 #align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eq
+-/
 
+#print HomologicalComplex.Hom.comm_from /-
 @[simp, reassoc, elementwise]
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
+-/
 
+#print HomologicalComplex.Hom.comm_to /-
 @[simp, reassoc, elementwise]
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
 #align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_to
+-/
 
 #print HomologicalComplex.Hom.sqFrom /-
 /-- A morphism of chain complexes
@@ -604,26 +674,34 @@ def sqFrom (f : Hom C₁ C₂) (i : ι) : Arrow.mk (C₁.dFrom i) ⟶ Arrow.mk (
 #align homological_complex.hom.sq_from HomologicalComplex.Hom.sqFrom
 -/
 
+#print HomologicalComplex.Hom.sqFrom_left /-
 @[simp]
 theorem sqFrom_left (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).left = f.f i :=
   rfl
 #align homological_complex.hom.sq_from_left HomologicalComplex.Hom.sqFrom_left
+-/
 
+#print HomologicalComplex.Hom.sqFrom_right /-
 @[simp]
 theorem sqFrom_right (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).right = f.next i :=
   rfl
 #align homological_complex.hom.sq_from_right HomologicalComplex.Hom.sqFrom_right
+-/
 
+#print HomologicalComplex.Hom.sqFrom_id /-
 @[simp]
 theorem sqFrom_id (C₁ : HomologicalComplex V c) (i : ι) : sqFrom (𝟙 C₁) i = 𝟙 _ :=
   rfl
 #align homological_complex.hom.sq_from_id HomologicalComplex.Hom.sqFrom_id
+-/
 
+#print HomologicalComplex.Hom.sqFrom_comp /-
 @[simp]
 theorem sqFrom_comp (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     sqFrom (f ≫ g) i = sqFrom f i ≫ sqFrom g i :=
   rfl
 #align homological_complex.hom.sq_from_comp HomologicalComplex.Hom.sqFrom_comp
+-/
 
 #print HomologicalComplex.Hom.sqTo /-
 /-- A morphism of chain complexes
@@ -634,15 +712,19 @@ def sqTo (f : Hom C₁ C₂) (j : ι) : Arrow.mk (C₁.dTo j) ⟶ Arrow.mk (C₂
 #align homological_complex.hom.sq_to HomologicalComplex.Hom.sqTo
 -/
 
+#print HomologicalComplex.Hom.sqTo_left /-
 @[simp]
 theorem sqTo_left (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).left = f.prev j :=
   rfl
 #align homological_complex.hom.sq_to_left HomologicalComplex.Hom.sqTo_left
+-/
 
+#print HomologicalComplex.Hom.sqTo_right /-
 @[simp]
 theorem sqTo_right (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).right = f.f j :=
   rfl
 #align homological_complex.hom.sq_to_right HomologicalComplex.Hom.sqTo_right
+-/
 
 end Hom
 
@@ -654,6 +736,7 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
+#print ChainComplex.of /-
 /-- Construct an `α`-indexed chain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0) : ChainComplex V α :=
@@ -665,21 +748,28 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
       simp only [category.id_comp, dif_pos rfl, eq_to_hom_refl]
       exact sq k }
 #align chain_complex.of ChainComplex.of
+-/
 
 variable (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0)
 
+#print ChainComplex.of_x /-
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align chain_complex.of_X ChainComplex.of_x
+-/
 
+#print ChainComplex.of_d /-
 @[simp]
 theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j := by dsimp [of];
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.of_d ChainComplex.of_d
+-/
 
+#print ChainComplex.of_d_ne /-
 theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align chain_complex.of_d_ne ChainComplex.of_d_ne
+-/
 
 end Of
 
@@ -690,6 +780,7 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n + 1) ≫ d_X n = 0) (Y : α → V)
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
 
+#print ChainComplex.ofHom /-
 /-- A constructor for chain maps between `α`-indexed chain complexes built using `chain_complex.of`,
 from a dependently typed collection of morphisms.
 -/
@@ -703,6 +794,7 @@ def ofHom (f : ∀ i : α, X i ⟶ Y i) (comm : ∀ i : α, f (i + 1) ≫ d_Y i
         simpa using comm m
       · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]; simp }
 #align chain_complex.of_hom ChainComplex.ofHom
+-/
 
 end OfHom
 
@@ -898,6 +990,7 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 #align chain_complex.mk_hom_f_1 ChainComplex.mkHom_f_1
 -/
 
+#print ChainComplex.mkHom_f_succ_succ /-
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
@@ -909,6 +1002,7 @@ theorem mkHom_f_succ_succ (n : ℕ) :
   dsimp [mk_hom, mk_hom_aux]
   induction n <;> congr
 #align chain_complex.mk_hom_f_succ_succ ChainComplex.mkHom_f_succ_succ
+-/
 
 end MkHom
 
@@ -920,6 +1014,7 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
+#print CochainComplex.of /-
 /-- Construct an `α`-indexed cochain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0) :
@@ -933,21 +1028,28 @@ def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n +
         simp [sq]
       all_goals simp }
 #align cochain_complex.of CochainComplex.of
+-/
 
 variable (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0)
 
+#print CochainComplex.of_x /-
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align cochain_complex.of_X CochainComplex.of_x
+-/
 
+#print CochainComplex.of_d /-
 @[simp]
 theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j := by dsimp [of];
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.of_d CochainComplex.of_d
+-/
 
+#print CochainComplex.of_d_ne /-
 theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align cochain_complex.of_d_ne CochainComplex.of_d_ne
+-/
 
 end Of
 
@@ -958,6 +1060,7 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n ≫ d_X (n + 1) = 0) (Y : α → V)
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
 
+#print CochainComplex.ofHom /-
 /--
 A constructor for chain maps between `α`-indexed cochain complexes built using `cochain_complex.of`,
 from a dependently typed collection of morphisms.
@@ -972,6 +1075,7 @@ def ofHom (f : ∀ i : α, X i ⟶ Y i) (comm : ∀ i : α, f i ≫ d_Y i = d_X
         simpa using comm n
       · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]; simp }
 #align cochain_complex.of_hom CochainComplex.ofHom
+-/
 
 end OfHom
 
@@ -1167,6 +1271,7 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 #align cochain_complex.mk_hom_f_1 CochainComplex.mkHom_f_1
 -/
 
+#print CochainComplex.mkHom_f_succ_succ /-
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
@@ -1178,6 +1283,7 @@ theorem mkHom_f_succ_succ (n : ℕ) :
   dsimp [mk_hom, mk_hom_aux]
   induction n <;> congr
 #align cochain_complex.mk_hom_f_succ_succ CochainComplex.mkHom_f_succ_succ
+-/
 
 end MkHom
 
Diff
@@ -535,8 +535,7 @@ def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
         calc
           (f i).inv ≫ C₁.d i j = (f i).inv ≫ (C₁.d i j ≫ (f j).Hom) ≫ (f j).inv := by simp
           _ = (f i).inv ≫ ((f i).Hom ≫ C₂.d i j) ≫ (f j).inv := by rw [hf i j hij]
-          _ = C₂.d i j ≫ (f j).inv := by simp
-           }
+          _ = C₂.d i j ≫ (f j).inv := by simp }
   hom_inv_id' := by ext i; exact (f i).hom_inv_id
   inv_hom_id' := by ext i; exact (f i).inv_hom_id
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
Diff
@@ -140,10 +140,10 @@ theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down
 @[simp]
 theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by
   classical
-    refine' dif_neg _
-    push_neg
-    intro
-    apply Nat.noConfusion
+  refine' dif_neg _
+  push_neg
+  intro
+  apply Nat.noConfusion
 #align chain_complex.next_nat_zero ChainComplex.next_nat_zero
 -/
 
@@ -173,10 +173,10 @@ theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
 @[simp]
 theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by
   classical
-    refine' dif_neg _
-    push_neg
-    intro
-    apply Nat.noConfusion
+  refine' dif_neg _
+  push_neg
+  intro
+  apply Nat.noConfusion
 #align cochain_complex.prev_nat_zero CochainComplex.prev_nat_zero
 -/
 
Diff
@@ -94,7 +94,7 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     C₁ = C₂ := by
   cases C₁
   cases C₂
-  dsimp at h_X
+  dsimp at h_X 
   subst h_X
   simp only [true_and_iff, eq_self_iff_true, heq_iff_eq]
   ext (i j)
@@ -397,7 +397,7 @@ def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.pt j :=
         dsimp [ComplexShape.prev]
         rw [dif_neg]; push_neg; intro i hi
         have : c.prev j = i := c.prev_eq' hi
-        rw [this] at h; contradiction)
+        rw [this] at h ; contradiction)
 #align homological_complex.X_prev_iso_self HomologicalComplex.xPrevIsoSelf
 -/
 
@@ -424,7 +424,7 @@ def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.pt i :=
         dsimp [ComplexShape.next]
         rw [dif_neg]; rintro ⟨j, hj⟩
         have : c.next i = j := c.next_eq' hj
-        rw [this] at h; contradiction)
+        rw [this] at h ; contradiction)
 #align homological_complex.X_next_iso_self HomologicalComplex.xNextIsoSelf
 -/
 
@@ -662,7 +662,7 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
     d := fun i j => if h : i = j + 1 then eqToHom (by subst h) ≫ d j else 0
     shape' := fun i j w => by rw [dif_neg (Ne.symm w)]
     d_comp_d' := fun i j k hij hjk => by
-      dsimp at hij hjk; substs hij hjk
+      dsimp at hij hjk ; substs hij hjk
       simp only [category.id_comp, dif_pos rfl, eq_to_hom_refl]
       exact sq k }
 #align chain_complex.of ChainComplex.of
@@ -727,15 +727,15 @@ variable {V}
 
 #print ChainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
+def MkStruct.flat (t : MkStruct V) : Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align chain_complex.mk_struct.flat ChainComplex.MkStruct.flat
 -/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s : d₁ ≫ d₀ = 0)
   (succ :
-    ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
-      Σ'(X₃ : V)(d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
+    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
+      Σ' (X₃ : V) (d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
 
 #print ChainComplex.mkAux /-
 /-- Auxiliary definition for `mk`. -/
@@ -806,14 +806,14 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₁ ⟶ X₀)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0) :
+    (succ' : ∀ t : Σ X₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0) :
     ChainComplex V ℕ :=
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align chain_complex.mk' ChainComplex.mk'
 -/
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
+variable (succ' : ∀ t : Σ X₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
 
 #print ChainComplex.mk'_X_0 /-
 @[simp]
@@ -846,9 +846,9 @@ variable {V} (P Q : ChainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt 1
   (succ :
     ∀ (n : ℕ)
       (p :
-        Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+        Σ' (f : P.pt n ⟶ Q.pt n) (f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
           f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f),
-      Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
+      Σ' f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
 
 #print ChainComplex.mkHomAux /-
 /-- An auxiliary construction for `mk_hom`.
@@ -860,7 +860,7 @@ in `mk_hom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+      Σ' (f : P.pt n ⟶ Q.pt n) (f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
         f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
@@ -996,15 +996,15 @@ variable {V}
 
 #print CochainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
+def MkStruct.flat (t : MkStruct V) : Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align cochain_complex.mk_struct.flat CochainComplex.MkStruct.flat
 -/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
   (succ :
-    ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
-      Σ'(X₃ : V)(d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
+    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
+      Σ' (X₃ : V) (d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
 
 #print CochainComplex.mkAux /-
 /-- Auxiliary definition for `mk`. -/
@@ -1075,14 +1075,14 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₀ ⟶ X₁)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
+    (succ' : ∀ t : Σ X₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
     CochainComplex V ℕ :=
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align cochain_complex.mk' CochainComplex.mk'
 -/
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
+variable (succ' : ∀ t : Σ X₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
 
 #print CochainComplex.mk'_X_0 /-
 @[simp]
@@ -1115,9 +1115,9 @@ variable {V} (P Q : CochainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt
   (succ :
     ∀ (n : ℕ)
       (p :
-        Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+        Σ' (f : P.pt n ⟶ Q.pt n) (f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
           f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'),
-      Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
+      Σ' f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
 
 #print CochainComplex.mkHomAux /-
 /-- An auxiliary construction for `mk_hom`.
@@ -1129,7 +1129,7 @@ in `mk_hom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+      Σ' (f : P.pt n ⟶ Q.pt n) (f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
         f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
Diff
@@ -271,7 +271,7 @@ theorem zero_f (C D : HomologicalComplex V c) (i : ι) : (0 : C ⟶ D).f i = 0 :
   rfl
 #align homological_complex.zero_apply HomologicalComplex.zero_f
 
-open ZeroObject
+open scoped ZeroObject
 
 #print HomologicalComplex.zero /-
 /-- The zero complex -/
@@ -332,7 +332,7 @@ def forgetEval (i : ι) : forget V c ⋙ GradedObject.eval i ≅ eval V c i :=
 
 end
 
-open Classical
+open scoped Classical
 
 noncomputable section
 
Diff
@@ -77,12 +77,6 @@ attribute [simp] shape
 
 variable {V} {c : ComplexShape ι}
 
-/- warning: homological_complex.d_comp_d -> HomologicalComplex.d_comp_d is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι) (j : ι) (k : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C j k)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι) (j : ι) (k : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C j k)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_comp_d HomologicalComplex.d_comp_dₓ'. -/
 @[simp, reassoc]
 theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k = 0 :=
   by
@@ -93,12 +87,6 @@ theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k
   · rw [C.shape i j hij, zero_comp]
 #align homological_complex.d_comp_d HomologicalComplex.d_comp_d
 
-/- warning: homological_complex.ext -> HomologicalComplex.ext is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (h_X : Eq.{max (succ u3) (succ u2)} (ι -> V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂)), (forall (i : ι) (j : ι), (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂) h_X j))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂) h_X i)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j)))) -> (Eq.{max (succ u2) (succ u3) (succ u1)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (h_X : Eq.{max (succ u3) (succ u1)} (ι -> V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂)), (forall (i : ι) (j : ι), (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) h_X j))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) h_X i)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j)))) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂)
-Case conversion may be inaccurate. Consider using '#align homological_complex.ext HomologicalComplex.extₓ'. -/
 theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     (h_d :
       ∀ i j : ι,
@@ -137,24 +125,12 @@ abbrev CochainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type
 
 namespace ChainComplex
 
-/- warning: chain_complex.prev -> ChainComplex.prev is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.down.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toHasAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.down.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
-Case conversion may be inaccurate. Consider using '#align chain_complex.prev ChainComplex.prevₓ'. -/
 @[simp]
 theorem prev (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.down α).prev i = i + 1 :=
   (ComplexShape.down α).prev_eq' rfl
 #align chain_complex.prev ChainComplex.prev
 
-/- warning: chain_complex.next -> ChainComplex.next is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.down.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toCancelAddMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.down.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toAddCancelMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
-Case conversion may be inaccurate. Consider using '#align chain_complex.next ChainComplex.nextₓ'. -/
 @[simp]
 theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down α).next i = i - 1 :=
   (ComplexShape.down α).next_eq' <| sub_add_cancel _ _
@@ -182,23 +158,11 @@ end ChainComplex
 
 namespace CochainComplex
 
-/- warning: cochain_complex.prev -> CochainComplex.prev is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.up.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toCancelAddMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.up.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toAddCancelMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
-Case conversion may be inaccurate. Consider using '#align cochain_complex.prev CochainComplex.prevₓ'. -/
 @[simp]
 theorem prev (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.up α).prev i = i - 1 :=
   (ComplexShape.up α).prev_eq' <| sub_add_cancel _ _
 #align cochain_complex.prev CochainComplex.prev
 
-/- warning: cochain_complex.next -> CochainComplex.next is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.up.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toHasAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
-but is expected to have type
-  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.up.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
-Case conversion may be inaccurate. Consider using '#align cochain_complex.next CochainComplex.nextₓ'. -/
 @[simp]
 theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.up α).next i = i + 1 :=
@@ -240,12 +204,6 @@ structure Hom (A B : HomologicalComplex V c) where
 #align homological_complex.hom HomologicalComplex.Hom
 -/
 
-/- warning: homological_complex.hom.comm -> HomologicalComplex.Hom.comm is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {A : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {B : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c A B) (i : ι) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c A B f i) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c B i j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c A i j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c A B f j))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {A : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {B : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c A B) (i : ι) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f i) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c B i j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c A i j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f j))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm HomologicalComplex.Hom.commₓ'. -/
 @[simp, reassoc]
 theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
     f.f i ≫ B.d i j = A.d i j ≫ f.f j :=
@@ -283,35 +241,17 @@ instance : Category (HomologicalComplex V c)
 
 end
 
-/- warning: homological_complex.id_f -> HomologicalComplex.id_f is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C C (CategoryTheory.CategoryStruct.id.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C) i) (CategoryTheory.CategoryStruct.id.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C C (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C) i) (CategoryTheory.CategoryStruct.id.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))
-Case conversion may be inaccurate. Consider using '#align homological_complex.id_f HomologicalComplex.id_fₓ'. -/
 @[simp]
 theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.pt i) :=
   rfl
 #align homological_complex.id_f HomologicalComplex.id_f
 
-/- warning: homological_complex.comp_f -> HomologicalComplex.comp_f is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ C₃ g i))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ C₃ g i))
-Case conversion may be inaccurate. Consider using '#align homological_complex.comp_f HomologicalComplex.comp_fₓ'. -/
 @[simp]
 theorem comp_f {C₁ C₂ C₃ : HomologicalComplex V c} (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     (f ≫ g).f i = f.f i ≫ g.f i :=
   rfl
 #align homological_complex.comp_f HomologicalComplex.comp_f
 
-/- warning: homological_complex.eq_to_hom_f -> HomologicalComplex.eqToHom_f is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (h : Eq.{max (succ u2) (succ u3) (succ u1)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂) (n : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ (CategoryTheory.eqToHom.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂ h) n) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (fun (n : ι) => HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (congr_arg.{max (succ u2) (succ u3) (succ u1), max (succ u3) (succ u2)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (ι -> V) C₁ C₂ (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c) h) n))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (h : Eq.{max (max (succ u3) (succ u2)) (succ u1)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ (CategoryTheory.eqToHom.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂ h) n) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) (congr_arg.{max (max (succ u1) (succ u3)) (succ u2), max (succ u1) (succ u3)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (ι -> V) C₁ C₂ (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c) h) n))
-Case conversion may be inaccurate. Consider using '#align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_fₓ'. -/
 @[simp]
 theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι) :
     HomologicalComplex.Hom.f (eqToHom h) n =
@@ -319,12 +259,6 @@ theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι
   by subst h; rfl
 #align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_f
 
-/- warning: homological_complex.hom_f_injective -> HomologicalComplex.hom_f_injective is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c}, Function.Injective.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (forall (i : ι), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (fun (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) => HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c}, Function.Injective.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (forall (i : ι), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (fun (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) => HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom_f_injective HomologicalComplex.hom_f_injectiveₓ'. -/
 -- We'll use this later to show that `homological_complex V c` is preadditive when `V` is.
 theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
     Function.Injective fun f : Hom C₁ C₂ => f.f := by tidy
@@ -332,12 +266,6 @@ theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
 
 instance : HasZeroMorphisms (HomologicalComplex V c) where Zero C D := ⟨{ f := fun i => 0 }⟩
 
-/- warning: homological_complex.zero_apply -> HomologicalComplex.zero_f is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (D : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D (OfNat.ofNat.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) 0 (OfNat.mk.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) 0 (Zero.zero.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.Limits.hasZeroMorphisms.{u1, u2, u3} ι V _inst_1 _inst_2 c) C D)))) i) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (D : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D (OfNat.ofNat.{max u2 u1} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) 0 (Zero.toOfNat0.{max u2 u1} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) (HomologicalComplex.instZeroHomHomologicalComplexToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c C D))) i) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.zero_apply HomologicalComplex.zero_fₓ'. -/
 @[simp]
 theorem zero_f (C D : HomologicalComplex V c) (i : ι) : (0 : C ⟶ D).f i = 0 :=
   rfl
@@ -354,12 +282,6 @@ noncomputable def zero [HasZeroObject V] : HomologicalComplex V c
 #align homological_complex.zero HomologicalComplex.zero
 -/
 
-/- warning: homological_complex.is_zero_zero -> HomologicalComplex.isZero_zero is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} [_inst_3 : CategoryTheory.Limits.HasZeroObject.{u1, u2} V _inst_1], CategoryTheory.Limits.IsZero.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.zero.{u1, u2, u3} ι V _inst_1 _inst_2 c _inst_3)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} [_inst_3 : CategoryTheory.Limits.HasZeroObject.{u2, u3} V _inst_1], CategoryTheory.Limits.IsZero.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.zero.{u2, u3, u1} ι V _inst_1 _inst_2 c _inst_3)
-Case conversion may be inaccurate. Consider using '#align homological_complex.is_zero_zero HomologicalComplex.isZero_zeroₓ'. -/
 theorem isZero_zero [HasZeroObject V] : IsZero (zero : HomologicalComplex V c) := by
   refine' ⟨fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩ <;> ext
 #align homological_complex.is_zero_zero HomologicalComplex.isZero_zero
@@ -370,12 +292,6 @@ instance [HasZeroObject V] : HasZeroObject (HomologicalComplex V c) :=
 noncomputable instance [HasZeroObject V] : Inhabited (HomologicalComplex V c) :=
   ⟨zero⟩
 
-/- warning: homological_complex.congr_hom -> HomologicalComplex.congr_hom is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {D : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D} {g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D}, (Eq.{succ (max u3 u1)} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) f g) -> (forall (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D f i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D g i))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {D : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D} {g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D}, (Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) f g) -> (forall (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D f i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D g i))
-Case conversion may be inaccurate. Consider using '#align homological_complex.congr_hom HomologicalComplex.congr_homₓ'. -/
 theorem congr_hom {C D : HomologicalComplex V c} {f g : C ⟶ D} (w : f = g) (i : ι) :
     f.f i = g.f i :=
   congr_fun (congr_arg Hom.f w) i
@@ -420,12 +336,6 @@ open Classical
 
 noncomputable section
 
-/- warning: homological_complex.d_comp_eq_to_hom -> HomologicalComplex.d_comp_eqToHom is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} {j' : ι} (rij : ComplexShape.Rel.{u3} ι c i j) (rij' : ComplexShape.Rel.{u3} ι c i j'), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (congr_arg.{succ u3, succ u2} ι V j' j (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C) (ComplexShape.next_eq.{u3} ι c i j' j rij' rij)))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} {j' : ι} (rij : ComplexShape.Rel.{u1} ι c i j) (rij' : ComplexShape.Rel.{u1} ι c i j'), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (congr_arg.{succ u1, succ u3} ι V j' j (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C) (ComplexShape.next_eq.{u1} ι c i j' j rij' rij)))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHomₓ'. -/
 /-- If `C.d i j` and `C.d i j'` are both allowed, then we must have `j = j'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -437,12 +347,6 @@ theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
   apply P
 #align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHom
 
-/- warning: homological_complex.eq_to_hom_comp_d -> HomologicalComplex.eqToHom_comp_d is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {i' : ι} {j : ι} (rij : ComplexShape.Rel.{u3} ι c i j) (rij' : ComplexShape.Rel.{u3} ι c i' j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (congr_arg.{succ u3, succ u2} ι V i i' (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C) (ComplexShape.prev_eq.{u3} ι c i i' j rij rij'))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {i' : ι} {j : ι} (rij : ComplexShape.Rel.{u1} ι c i j) (rij' : ComplexShape.Rel.{u1} ι c i' j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (congr_arg.{succ u1, succ u3} ι V i i' (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C) (ComplexShape.prev_eq.{u1} ι c i i' j rij rij'))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_dₓ'. -/
 /-- If `C.d i j` and `C.d i' j` are both allowed, then we must have `i = i'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -454,12 +358,6 @@ theorem eqToHom_comp_d {i i' j : ι} (rij : c.Rel i j) (rij' : c.Rel i' j) :
   apply P
 #align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_d
 
-/- warning: homological_complex.kernel_eq_kernel -> HomologicalComplex.kernel_eq_kernel is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u1, u2} V _inst_1 _inst_2] {i : ι} {j : ι} {j' : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (ComplexShape.Rel.{u3} ι c i j') -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j'))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u2, u3} V _inst_1 _inst_2] {i : ι} {j : ι} {j' : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (ComplexShape.Rel.{u1} ι c i j') -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j'))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.kernel_eq_kernel HomologicalComplex.kernel_eq_kernelₓ'. -/
 theorem kernel_eq_kernel [HasKernels V] {i j j' : ι} (r : c.Rel i j) (r' : c.Rel i j') :
     kernelSubobject (C.d i j) = kernelSubobject (C.d i j') :=
   by
@@ -467,12 +365,6 @@ theorem kernel_eq_kernel [HasKernels V] {i j j' : ι} (r : c.Rel i j) (r' : c.Re
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_eq_kernel HomologicalComplex.kernel_eq_kernel
 
-/- warning: homological_complex.image_eq_image -> HomologicalComplex.image_eq_image is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u1, u2} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u1, u2} V _inst_1] {i : ι} {i' : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (ComplexShape.Rel.{u3} ι c i' j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u2, u3} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u2, u3} V _inst_1] {i : ι} {i' : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (ComplexShape.Rel.{u1} ι c i' j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.image_eq_image HomologicalComplex.image_eq_imageₓ'. -/
 theorem image_eq_image [HasImages V] [HasEqualizers V] {i i' j : ι} (r : c.Rel i j)
     (r' : c.Rel i' j) : imageSubobject (C.d i j) = imageSubobject (C.d i' j) :=
   by
@@ -552,113 +444,53 @@ abbrev dFrom (i : ι) : C.pt i ⟶ C.xNext i :=
 #align homological_complex.d_from HomologicalComplex.dFrom
 -/
 
-/- warning: homological_complex.d_to_eq -> HomologicalComplex.dTo_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_eq HomologicalComplex.dTo_eqₓ'. -/
 theorem dTo_eq {i j : ι} (r : c.Rel i j) : C.dTo j = (C.xPrevIso r).Hom ≫ C.d i j :=
   by
   obtain rfl := c.prev_eq' r
   exact (category.id_comp _).symm
 #align homological_complex.d_to_eq HomologicalComplex.dTo_eq
 
-/- warning: homological_complex.d_to_eq_zero -> HomologicalComplex.dTo_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {j : ι}, (Not (ComplexShape.Rel.{u3} ι c (ComplexShape.prev.{u3} ι c j) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j))))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {j : ι}, (Not (ComplexShape.Rel.{u1} ι c (ComplexShape.prev.{u1} ι c j) j)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_eq_zero HomologicalComplex.dTo_eq_zeroₓ'. -/
 @[simp]
 theorem dTo_eq_zero {j : ι} (h : ¬c.Rel (c.prev j) j) : C.dTo j = 0 :=
   C.shape _ _ h
 #align homological_complex.d_to_eq_zero HomologicalComplex.dTo_eq_zero
 
-/- warning: homological_complex.d_from_eq -> HomologicalComplex.dFrom_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_eq HomologicalComplex.dFrom_eqₓ'. -/
 theorem dFrom_eq {i j : ι} (r : c.Rel i j) : C.dFrom i = C.d i j ≫ (C.xNextIso r).inv :=
   by
   obtain rfl := c.next_eq' r
   exact (category.comp_id _).symm
 #align homological_complex.d_from_eq HomologicalComplex.dFrom_eq
 
-/- warning: homological_complex.d_from_eq_zero -> HomologicalComplex.dFrom_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι}, (Not (ComplexShape.Rel.{u3} ι c i (ComplexShape.next.{u3} ι c i))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι}, (Not (ComplexShape.Rel.{u1} ι c i (ComplexShape.next.{u1} ι c i))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_eq_zero HomologicalComplex.dFrom_eq_zeroₓ'. -/
 @[simp]
 theorem dFrom_eq_zero {i : ι} (h : ¬c.Rel i (c.next i)) : C.dFrom i = 0 :=
   C.shape _ _ h
 #align homological_complex.d_from_eq_zero HomologicalComplex.dFrom_eq_zero
 
-/- warning: homological_complex.X_prev_iso_comp_d_to -> HomologicalComplex.xPrevIso_comp_dTo is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dToₓ'. -/
 @[simp, reassoc]
 theorem xPrevIso_comp_dTo {i j : ι} (r : c.Rel i j) : (C.xPrevIso r).inv ≫ C.dTo j = C.d i j := by
   simp [C.d_to_eq r]
 #align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dTo
 
-/- warning: homological_complex.X_prev_iso_self_comp_d_to -> HomologicalComplex.xPrevIsoSelf_comp_dTo is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {j : ι} (h : Not (ComplexShape.Rel.{u3} ι c (ComplexShape.prev.{u3} ι c j) j)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrevIsoSelf.{u1, u2, u3} ι V _inst_1 _inst_2 c C j h)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {j : ι} (h : Not (ComplexShape.Rel.{u1} ι c (ComplexShape.prev.{u1} ι c j) j)), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrevIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C j h)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dToₓ'. -/
 @[simp, reassoc]
 theorem xPrevIsoSelf_comp_dTo {j : ι} (h : ¬c.Rel (c.prev j) j) :
     (C.xPrevIsoSelf h).inv ≫ C.dTo j = 0 := by simp [h]
 #align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dTo
 
-/- warning: homological_complex.d_from_comp_X_next_iso -> HomologicalComplex.dFrom_comp_xNextIso is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIsoₓ'. -/
 @[simp, reassoc]
 theorem dFrom_comp_xNextIso {i j : ι} (r : c.Rel i j) : C.dFrom i ≫ (C.xNextIso r).Hom = C.d i j :=
   by simp [C.d_from_eq r]
 #align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIso
 
-/- warning: homological_complex.d_from_comp_X_next_iso_self -> HomologicalComplex.dFrom_comp_xNextIsoSelf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} (h : Not (ComplexShape.Rel.{u3} ι c i (ComplexShape.next.{u3} ι c i))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNextIsoSelf.{u1, u2, u3} ι V _inst_1 _inst_2 c C i h))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} (h : Not (ComplexShape.Rel.{u1} ι c i (ComplexShape.next.{u1} ι c i))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNextIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C i h))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelfₓ'. -/
 @[simp, reassoc]
 theorem dFrom_comp_xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) :
     C.dFrom i ≫ (C.xNextIsoSelf h).Hom = 0 := by simp [h]
 #align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelf
 
-/- warning: homological_complex.d_to_comp_d_from -> HomologicalComplex.dTo_comp_dFrom is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_comp_d_from HomologicalComplex.dTo_comp_dFromₓ'. -/
 @[simp]
 theorem dTo_comp_dFrom (j : ι) : C.dTo j ≫ C.dFrom j = 0 :=
   C.d_comp_d _ _ _
 #align homological_complex.d_to_comp_d_from HomologicalComplex.dTo_comp_dFrom
 
-/- warning: homological_complex.kernel_from_eq_kernel -> HomologicalComplex.kernel_from_eq_kernel is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u1, u2} V _inst_1 _inst_2] {i : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) _inst_2 (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u2, u3} V _inst_1 _inst_2] {i : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) _inst_2 (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.kernel_from_eq_kernel HomologicalComplex.kernel_from_eq_kernelₓ'. -/
 theorem kernel_from_eq_kernel [HasKernels V] {i j : ι} (r : c.Rel i j) :
     kernelSubobject (C.dFrom i) = kernelSubobject (C.d i j) :=
   by
@@ -666,12 +498,6 @@ theorem kernel_from_eq_kernel [HasKernels V] {i j : ι} (r : c.Rel i j) :
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_from_eq_kernel HomologicalComplex.kernel_from_eq_kernel
 
-/- warning: homological_complex.image_to_eq_image -> HomologicalComplex.image_to_eq_image is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u1, u2} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u1, u2} V _inst_1] {i : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j))) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u2, u3} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u2, u3} V _inst_1] {i : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.image_to_eq_image HomologicalComplex.image_to_eq_imageₓ'. -/
 theorem image_to_eq_image [HasImages V] [HasEqualizers V] {i j : ι} (r : c.Rel i j) :
     imageSubobject (C.dTo j) = imageSubobject (C.d i j) :=
   by
@@ -716,24 +542,12 @@ def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
 -/
 
-/- warning: homological_complex.hom.iso_of_components_app -> HomologicalComplex.Hom.isoOfComponents_app is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : forall (i : ι), CategoryTheory.Iso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (hf : forall (i : ι) (j : ι), (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (f i)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (f j))))) (i : ι), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.isoApp.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ (HomologicalComplex.Hom.isoOfComponents.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f hf) i) (f i)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : forall (i : ι), CategoryTheory.Iso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (hf : forall (i : ι) (j : ι), (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (f i)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (f j))))) (i : ι), Eq.{succ u2} (CategoryTheory.Iso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.isoApp.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ (HomologicalComplex.Hom.isoOfComponents.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f hf) i) (f i)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_appₓ'. -/
 @[simp]
 theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) (i : ι) :
     isoApp (isoOfComponents f hf) i = f i := by ext; simp
 #align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_app
 
-/- warning: homological_complex.hom.is_iso_of_components -> HomologicalComplex.Hom.isIso_of_components is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) [_inst_3 : forall (n : ι), CategoryTheory.IsIso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f n)], CategoryTheory.IsIso.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂ f
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) [_inst_3 : forall (n : ι), CategoryTheory.IsIso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f n)], CategoryTheory.IsIso.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂ f
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.is_iso_of_components HomologicalComplex.Hom.isIso_of_componentsₓ'. -/
 theorem isIso_of_components (f : C₁ ⟶ C₂) [∀ n : ι, IsIso (f.f n)] : IsIso f :=
   by
   convert is_iso.of_iso (HomologicalComplex.Hom.isoOfComponents (fun n => as_iso (f.f n)) (by tidy))
@@ -751,12 +565,6 @@ abbrev prev (f : Hom C₁ C₂) (j : ι) : C₁.xPrev j ⟶ C₂.xPrev j :=
 #align homological_complex.hom.prev HomologicalComplex.Hom.prev
 -/
 
-/- warning: homological_complex.hom.prev_eq -> HomologicalComplex.Hom.prev_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j w))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j w))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.prev_eq HomologicalComplex.Hom.prev_eqₓ'. -/
 theorem prev_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.prev j = (C₁.xPrevIso w).Hom ≫ f.f i ≫ (C₂.xPrevIso w).inv :=
   by
@@ -771,12 +579,6 @@ abbrev next (f : Hom C₁ C₂) (i : ι) : C₁.xNext i ⟶ C₂.xNext i :=
 #align homological_complex.hom.next HomologicalComplex.Hom.next
 -/
 
-/- warning: homological_complex.hom.next_eq -> HomologicalComplex.Hom.next_eq is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j w))))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j w))))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eqₓ'. -/
 theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.next i = (C₁.xNextIso w).Hom ≫ f.f j ≫ (C₂.xNextIso w).inv :=
   by
@@ -784,23 +586,11 @@ theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
   simp only [X_next_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id]
 #align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eq
 
-/- warning: homological_complex.hom.comm_from -> HomologicalComplex.Hom.comm_from is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_fromₓ'. -/
 @[simp, reassoc, elementwise]
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
 
-/- warning: homological_complex.hom.comm_to -> HomologicalComplex.Hom.comm_to is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_toₓ'. -/
 @[simp, reassoc, elementwise]
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
@@ -815,45 +605,21 @@ def sqFrom (f : Hom C₁ C₂) (i : ι) : Arrow.mk (C₁.dFrom i) ⟶ Arrow.mk (
 #align homological_complex.hom.sq_from HomologicalComplex.Hom.sqFrom
 -/
 
-/- warning: homological_complex.hom.sq_from_left -> HomologicalComplex.Hom.sqFrom_left is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_left HomologicalComplex.Hom.sqFrom_leftₓ'. -/
 @[simp]
 theorem sqFrom_left (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).left = f.f i :=
   rfl
 #align homological_complex.hom.sq_from_left HomologicalComplex.Hom.sqFrom_left
 
-/- warning: homological_complex.hom.sq_from_right -> HomologicalComplex.Hom.sqFrom_right is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_right HomologicalComplex.Hom.sqFrom_rightₓ'. -/
 @[simp]
 theorem sqFrom_right (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).right = f.next i :=
   rfl
 #align homological_complex.hom.sq_from_right HomologicalComplex.Hom.sqFrom_right
 
-/- warning: homological_complex.hom.sq_from_id -> HomologicalComplex.Hom.sqFrom_id is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1))) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₁ (CategoryTheory.CategoryStruct.id.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁) i) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1))) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₁ (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁) i) (CategoryTheory.CategoryStruct.id.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_id HomologicalComplex.Hom.sqFrom_idₓ'. -/
 @[simp]
 theorem sqFrom_id (C₁ : HomologicalComplex V c) (i : ι) : sqFrom (𝟙 C₁) i = 𝟙 _ :=
   rfl
 #align homological_complex.hom.sq_from_id HomologicalComplex.Hom.sqFrom_id
 
-/- warning: homological_complex.hom.sq_from_comp -> HomologicalComplex.Hom.sqFrom_comp is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1))) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i))) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ C₃ g i))
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1))) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i))) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ C₃ g i))
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_comp HomologicalComplex.Hom.sqFrom_compₓ'. -/
 @[simp]
 theorem sqFrom_comp (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     sqFrom (f ≫ g) i = sqFrom f i ≫ sqFrom g i :=
@@ -869,23 +635,11 @@ def sqTo (f : Hom C₁ C₂) (j : ι) : Arrow.mk (C₁.dTo j) ⟶ Arrow.mk (C₂
 #align homological_complex.hom.sq_to HomologicalComplex.Hom.sqTo
 -/
 
-/- warning: homological_complex.hom.sq_to_left -> HomologicalComplex.Hom.sqTo_left is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_to_left HomologicalComplex.Hom.sqTo_leftₓ'. -/
 @[simp]
 theorem sqTo_left (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).left = f.prev j :=
   rfl
 #align homological_complex.hom.sq_to_left HomologicalComplex.Hom.sqTo_left
 
-/- warning: homological_complex.hom.sq_to_right -> HomologicalComplex.Hom.sqTo_right is a dubious translation:
-lean 3 declaration is
-  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)
-but is expected to have type
-  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)
-Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_to_right HomologicalComplex.Hom.sqTo_rightₓ'. -/
 @[simp]
 theorem sqTo_right (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).right = f.f j :=
   rfl
@@ -901,12 +655,6 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
-/- warning: chain_complex.of -> ChainComplex.of is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) -> (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n))))) -> (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align chain_complex.of ChainComplex.ofₓ'. -/
 /-- Construct an `α`-indexed chain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0) : ChainComplex V α :=
@@ -921,28 +669,16 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
 
 variable (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0)
 
-/- warning: chain_complex.of_X -> ChainComplex.of_x is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (n : α), Eq.{succ u2} V (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) (n : α), Eq.{succ u3} V (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
-Case conversion may be inaccurate. Consider using '#align chain_complex.of_X ChainComplex.of_xₓ'. -/
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align chain_complex.of_X ChainComplex.of_x
 
-/- warning: chain_complex.of_d -> ChainComplex.of_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align chain_complex.of_d ChainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j := by dsimp [of];
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.of_d ChainComplex.of_d
 
-/- warning: chain_complex.of_d_ne -> ChainComplex.of_d_ne is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align chain_complex.of_d_ne ChainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align chain_complex.of_d_ne ChainComplex.of_d_ne
 
@@ -955,9 +691,6 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n + 1) ≫ d_X n = 0) (Y : α → V)
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
 
-/- warning: chain_complex.of_hom -> ChainComplex.ofHom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align chain_complex.of_hom ChainComplex.ofHomₓ'. -/
 /-- A constructor for chain maps between `α`-indexed chain complexes built using `chain_complex.of`,
 from a dependently typed collection of morphisms.
 -/
@@ -1166,9 +899,6 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 #align chain_complex.mk_hom_f_1 ChainComplex.mkHom_f_1
 -/
 
-/- warning: chain_complex.mk_hom_f_succ_succ -> ChainComplex.mkHom_f_succ_succ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align chain_complex.mk_hom_f_succ_succ ChainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
@@ -1191,12 +921,6 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
-/- warning: cochain_complex.of -> CochainComplex.of is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) -> (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) -> (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
-Case conversion may be inaccurate. Consider using '#align cochain_complex.of CochainComplex.ofₓ'. -/
 /-- Construct an `α`-indexed cochain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0) :
@@ -1213,28 +937,16 @@ def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n +
 
 variable (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0)
 
-/- warning: cochain_complex.of_X -> CochainComplex.of_x is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (n : α), Eq.{succ u2} V (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) (n : α), Eq.{succ u3} V (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
-Case conversion may be inaccurate. Consider using '#align cochain_complex.of_X CochainComplex.of_xₓ'. -/
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align cochain_complex.of_X CochainComplex.of_x
 
-/- warning: cochain_complex.of_d -> CochainComplex.of_d is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d CochainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j := by dsimp [of];
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.of_d CochainComplex.of_d
 
-/- warning: cochain_complex.of_d_ne -> CochainComplex.of_d_ne is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d_ne CochainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align cochain_complex.of_d_ne CochainComplex.of_d_ne
 
@@ -1247,9 +959,6 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n ≫ d_X (n + 1) = 0) (Y : α → V)
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
 
-/- warning: cochain_complex.of_hom -> CochainComplex.ofHom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cochain_complex.of_hom CochainComplex.ofHomₓ'. -/
 /--
 A constructor for chain maps between `α`-indexed cochain complexes built using `cochain_complex.of`,
 from a dependently typed collection of morphisms.
@@ -1459,9 +1168,6 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 #align cochain_complex.mk_hom_f_1 CochainComplex.mkHom_f_1
 -/
 
-/- warning: cochain_complex.mk_hom_f_succ_succ -> CochainComplex.mkHom_f_succ_succ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_hom_f_succ_succ CochainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
Diff
@@ -316,9 +316,7 @@ Case conversion may be inaccurate. Consider using '#align homological_complex.eq
 theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι) :
     HomologicalComplex.Hom.f (eqToHom h) n =
       eqToHom (congr_fun (congr_arg HomologicalComplex.x h) n) :=
-  by
-  subst h
-  rfl
+  by subst h; rfl
 #align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_f
 
 /- warning: homological_complex.hom_f_injective -> HomologicalComplex.hom_f_injective is a dubious translation:
@@ -435,10 +433,7 @@ and so the differentials only differ by an `eq_to_hom`.
 theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
     C.d i j' ≫ eqToHom (congr_arg C.pt (c.next_eq rij' rij)) = C.d i j :=
   by
-  have P : ∀ h : j' = j, C.d i j' ≫ eq_to_hom (congr_arg C.X h) = C.d i j :=
-    by
-    rintro rfl
-    simp
+  have P : ∀ h : j' = j, C.d i j' ≫ eq_to_hom (congr_arg C.X h) = C.d i j := by rintro rfl; simp
   apply P
 #align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHom
 
@@ -455,10 +450,7 @@ and so the differentials only differ by an `eq_to_hom`.
 theorem eqToHom_comp_d {i i' j : ι} (rij : c.Rel i j) (rij' : c.Rel i' j) :
     eqToHom (congr_arg C.pt (c.prev_eq rij rij')) ≫ C.d i' j = C.d i j :=
   by
-  have P : ∀ h : i = i', eq_to_hom (congr_arg C.X h) ≫ C.d i' j = C.d i j :=
-    by
-    rintro rfl
-    simp
+  have P : ∀ h : i = i', eq_to_hom (congr_arg C.X h) ≫ C.d i' j = C.d i j := by rintro rfl; simp
   apply P
 #align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_d
 
@@ -719,12 +711,8 @@ def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
           _ = (f i).inv ≫ ((f i).Hom ≫ C₂.d i j) ≫ (f j).inv := by rw [hf i j hij]
           _ = C₂.d i j ≫ (f j).inv := by simp
            }
-  hom_inv_id' := by
-    ext i
-    exact (f i).hom_inv_id
-  inv_hom_id' := by
-    ext i
-    exact (f i).inv_hom_id
+  hom_inv_id' := by ext i; exact (f i).hom_inv_id
+  inv_hom_id' := by ext i; exact (f i).inv_hom_id
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
 -/
 
@@ -737,9 +725,7 @@ Case conversion may be inaccurate. Consider using '#align homological_complex.ho
 @[simp]
 theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) (i : ι) :
-    isoApp (isoOfComponents f hf) i = f i := by
-  ext
-  simp
+    isoApp (isoOfComponents f hf) i = f i := by ext; simp
 #align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_app
 
 /- warning: homological_complex.hom.is_iso_of_components -> HomologicalComplex.Hom.isIso_of_components is a dubious translation:
@@ -950,19 +936,14 @@ theorem of_x (n : α) : (of X d sq).pt n = X n :=
 <too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.of_d ChainComplex.of_dₓ'. -/
 @[simp]
-theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j :=
-  by
-  dsimp [of]
+theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j := by dsimp [of];
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.of_d ChainComplex.of_d
 
 /- warning: chain_complex.of_d_ne -> ChainComplex.of_d_ne is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.of_d_ne ChainComplex.of_d_neₓ'. -/
-theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 :=
-  by
-  dsimp [of]
-  rw [dif_neg h]
+theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align chain_complex.of_d_ne ChainComplex.of_d_ne
 
 end Of
@@ -988,8 +969,7 @@ def ofHom (f : ∀ i : α, X i ⟶ Y i) (comm : ∀ i : α, f (i + 1) ≫ d_Y i
       by_cases h : n = m + 1
       · subst h
         simpa using comm m
-      · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]
-        simp }
+      · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]; simp }
 #align chain_complex.of_hom ChainComplex.ofHom
 
 end OfHom
@@ -1072,19 +1052,15 @@ theorem mk_X_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
 
 #print ChainComplex.mk_d_1_0 /-
 @[simp]
-theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 0 = d₀ :=
-  by
-  change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
-  rw [if_pos rfl, category.id_comp]
+theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 0 = d₀ := by
+  change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀; rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk_d_1_0 ChainComplex.mk_d_1_0
 -/
 
 #print ChainComplex.mk_d_2_0 /-
 @[simp]
-theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ :=
-  by
-  change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁
-  rw [if_pos rfl, category.id_comp]
+theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ := by
+  change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁; rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_0
 -/
 
@@ -1122,9 +1098,7 @@ theorem mk'_X_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
 
 #print ChainComplex.mk'_d_1_0 /-
 @[simp]
-theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 1 0 = d₀ :=
-  by
-  change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
+theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 1 0 = d₀ := by change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀;
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk'_d_1_0 ChainComplex.mk'_d_1_0
 -/
@@ -1229,9 +1203,7 @@ def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n +
     CochainComplex V α :=
   { pt
     d := fun i j => if h : i + 1 = j then d _ ≫ eqToHom (by subst h) else 0
-    shape' := fun i j w => by
-      rw [dif_neg]
-      exact w
+    shape' := fun i j w => by rw [dif_neg]; exact w
     d_comp_d' := fun i j k => by
       split_ifs with h h' h'
       · substs h h'
@@ -1256,19 +1228,14 @@ theorem of_x (n : α) : (of X d sq).pt n = X n :=
 <too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d CochainComplex.of_dₓ'. -/
 @[simp]
-theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j :=
-  by
-  dsimp [of]
+theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j := by dsimp [of];
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.of_d CochainComplex.of_d
 
 /- warning: cochain_complex.of_d_ne -> CochainComplex.of_d_ne is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d_ne CochainComplex.of_d_neₓ'. -/
-theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 :=
-  by
-  dsimp [of]
-  rw [dif_neg h]
+theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 := by dsimp [of]; rw [dif_neg h]
 #align cochain_complex.of_d_ne CochainComplex.of_d_ne
 
 end Of
@@ -1295,8 +1262,7 @@ def ofHom (f : ∀ i : α, X i ⟶ Y i) (comm : ∀ i : α, f i ≫ d_Y i = d_X
       by_cases h : n + 1 = m
       · subst h
         simpa using comm n
-      · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]
-        simp }
+      · rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]; simp }
 #align cochain_complex.of_hom CochainComplex.ofHom
 
 end OfHom
@@ -1379,19 +1345,15 @@ theorem mk_X_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
 
 #print CochainComplex.mk_d_1_0 /-
 @[simp]
-theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 0 1 = d₀ :=
-  by
-  change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
-  rw [if_pos rfl, category.comp_id]
+theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 0 1 = d₀ := by
+  change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀; rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk_d_1_0 CochainComplex.mk_d_1_0
 -/
 
 #print CochainComplex.mk_d_2_0 /-
 @[simp]
-theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 2 = d₁ :=
-  by
-  change ite (2 = 1 + 1) (d₁ ≫ 𝟙 X₂) 0 = d₁
-  rw [if_pos rfl, category.comp_id]
+theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 2 = d₁ := by
+  change ite (2 = 1 + 1) (d₁ ≫ 𝟙 X₂) 0 = d₁; rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk_d_2_0 CochainComplex.mk_d_2_0
 -/
 
@@ -1429,9 +1391,7 @@ theorem mk'_X_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
 
 #print CochainComplex.mk'_d_1_0 /-
 @[simp]
-theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 0 1 = d₀ :=
-  by
-  change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
+theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 0 1 = d₀ := by change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀;
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk'_d_1_0 CochainComplex.mk'_d_1_0
 -/
Diff
@@ -947,10 +947,7 @@ theorem of_x (n : α) : (of X d sq).pt n = X n :=
 #align chain_complex.of_X ChainComplex.of_x
 
 /- warning: chain_complex.of_d -> ChainComplex.of_d is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (j : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) j) (d j)
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) (j : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) j) (d j)
+<too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.of_d ChainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j :=
@@ -960,10 +957,7 @@ theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j :=
 #align chain_complex.of_d ChainComplex.of_d
 
 /- warning: chain_complex.of_d_ne -> ChainComplex.of_d_ne is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) {i : α} {j : α}, (Ne.{succ u3} α i (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j))))))
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) {i : α} {j : α}, (Ne.{succ u1} α i (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.of_d_ne ChainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 :=
   by
@@ -981,10 +975,7 @@ variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n +
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
 
 /- warning: chain_complex.of_hom -> ChainComplex.ofHom is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n)) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X i) (Y i) (d_X i) (f i))) -> (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4)))) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X i) (Y i) (d_X i) (f i))) -> (Quiver.Hom.{max (succ u1) (succ u3), max (max u3 u2) u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max u2 u1) u3} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max u2 u1) u3} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4)))) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.of_hom ChainComplex.ofHomₓ'. -/
 /-- A constructor for chain maps between `α`-indexed chain complexes built using `chain_complex.of`,
 from a dependently typed collection of morphisms.
@@ -1202,10 +1193,7 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 -/
 
 /- warning: chain_complex.mk_hom_f_succ_succ -> ChainComplex.mkHom_f_succ_succ is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) one (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) zero)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f)))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n))))))) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)))))
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Q : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) one (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) zero)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f)))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) p))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) p))))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n))))))) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align chain_complex.mk_hom_f_succ_succ ChainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
@@ -1265,10 +1253,7 @@ theorem of_x (n : α) : (of X d sq).pt n = X n :=
 #align cochain_complex.of_X CochainComplex.of_x
 
 /- warning: cochain_complex.of_d -> CochainComplex.of_d is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (j : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d j)
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) (j : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d j)
+<too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d CochainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j :=
@@ -1278,10 +1263,7 @@ theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j :=
 #align cochain_complex.of_d CochainComplex.of_d
 
 /- warning: cochain_complex.of_d_ne -> CochainComplex.of_d_ne is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) {i : α} {j : α}, (Ne.{succ u3} α (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j))))))
-but is expected to have type
-  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) {i : α} {j : α}, (Ne.{succ u1} α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d_ne CochainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 :=
   by
@@ -1299,10 +1281,7 @@ variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n 
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
 
 /- warning: cochain_complex.of_hom -> CochainComplex.ofHom is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (Y i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (f i) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))))) -> (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4)))) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (Y i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (f i) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))) -> (Quiver.Hom.{max (succ u1) (succ u3), max (max u3 u2) u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max u2 u1) u3} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max u2 u1) u3} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4)))) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.of_hom CochainComplex.ofHomₓ'. -/
 /--
 A constructor for chain maps between `α`-indexed cochain complexes built using `cochain_complex.of`,
@@ -1521,10 +1500,7 @@ theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
 -/
 
 /- warning: cochain_complex.mk_hom_f_succ_succ -> CochainComplex.mkHom_f_succ_succ is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f'')) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))))
-but is expected to have type
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) one)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f''))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f'')) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_hom_f_succ_succ CochainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
Diff
@@ -83,7 +83,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι) (j : ι) (k : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C j k)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k))))
 Case conversion may be inaccurate. Consider using '#align homological_complex.d_comp_d HomologicalComplex.d_comp_dₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k = 0 :=
   by
   by_cases hij : c.rel i j
@@ -246,7 +246,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {A : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {B : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c A B) (i : ι) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f i) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c B i j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c A i j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f j))
 Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm HomologicalComplex.Hom.commₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
     f.f i ≫ B.d i j = A.d i j ≫ f.f j :=
   by
@@ -612,7 +612,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
 Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dToₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem xPrevIso_comp_dTo {i j : ι} (r : c.Rel i j) : (C.xPrevIso r).inv ≫ C.dTo j = C.d i j := by
   simp [C.d_to_eq r]
 #align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dTo
@@ -623,7 +623,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {j : ι} (h : Not (ComplexShape.Rel.{u1} ι c (ComplexShape.prev.{u1} ι c j) j)), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrevIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C j h)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))))
 Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dToₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem xPrevIsoSelf_comp_dTo {j : ι} (h : ¬c.Rel (c.prev j) j) :
     (C.xPrevIsoSelf h).inv ≫ C.dTo j = 0 := by simp [h]
 #align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dTo
@@ -634,7 +634,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
 Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIsoₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem dFrom_comp_xNextIso {i j : ι} (r : c.Rel i j) : C.dFrom i ≫ (C.xNextIso r).Hom = C.d i j :=
   by simp [C.d_from_eq r]
 #align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIso
@@ -645,7 +645,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} (h : Not (ComplexShape.Rel.{u1} ι c i (ComplexShape.next.{u1} ι c i))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNextIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C i h))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))))
 Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelfₓ'. -/
-@[simp, reassoc.1]
+@[simp, reassoc]
 theorem dFrom_comp_xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) :
     C.dFrom i ≫ (C.xNextIsoSelf h).Hom = 0 := by simp [h]
 #align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelf
@@ -804,7 +804,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i))
 Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_fromₓ'. -/
-@[simp, reassoc.1, elementwise]
+@[simp, reassoc, elementwise]
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
@@ -815,7 +815,7 @@ lean 3 declaration is
 but is expected to have type
   forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j))
 Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_toₓ'. -/
-@[simp, reassoc.1, elementwise]
+@[simp, reassoc, elementwise]
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
 #align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_to
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Scott Morrison
 
 ! This file was ported from Lean 3 source module algebra.homology.homological_complex
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
+! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.CategoryTheory.GradedObject
 /-!
 # Homological complexes.
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 A `homological_complex V c` with a "shape" controlled by `c : complex_shape ι`
 has chain groups `X i` (objects in `V`) indexed by `i : ι`,
 and a differential `d i j` whenever `c.rel i j`.
Diff
@@ -47,6 +47,7 @@ variable {ι : Type _}
 
 variable (V : Type u) [Category.{v} V] [HasZeroMorphisms V]
 
+#print HomologicalComplex /-
 /-- A `homological_complex V c` with a "shape" controlled by `c : complex_shape ι`
 has chain groups `X i` (objects in `V`) indexed by `i : ι`,
 and a differential `d i j` whenever `c.rel i j`.
@@ -63,6 +64,7 @@ structure HomologicalComplex (c : ComplexShape ι) where
   shape' : ∀ i j, ¬c.Rel i j → d i j = 0 := by obviously
   d_comp_d' : ∀ i j k, c.Rel i j → c.Rel j k → d i j ≫ d j k = 0 := by obviously
 #align homological_complex HomologicalComplex
+-/
 
 namespace HomologicalComplex
 
@@ -72,6 +74,12 @@ attribute [simp] shape
 
 variable {V} {c : ComplexShape ι}
 
+/- warning: homological_complex.d_comp_d -> HomologicalComplex.d_comp_d is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι) (j : ι) (k : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C j k)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C k)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι) (j : ι) (k : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C j k)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C k))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_comp_d HomologicalComplex.d_comp_dₓ'. -/
 @[simp, reassoc.1]
 theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k = 0 :=
   by
@@ -82,6 +90,12 @@ theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k
   · rw [C.shape i j hij, zero_comp]
 #align homological_complex.d_comp_d HomologicalComplex.d_comp_d
 
+/- warning: homological_complex.ext -> HomologicalComplex.ext is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (h_X : Eq.{max (succ u3) (succ u2)} (ι -> V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂)), (forall (i : ι) (j : ι), (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂) h_X j))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂) h_X i)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j)))) -> (Eq.{max (succ u2) (succ u3) (succ u1)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (h_X : Eq.{max (succ u3) (succ u1)} (ι -> V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂)), (forall (i : ι) (j : ι), (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) h_X j))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) h_X i)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j)))) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂)
+Case conversion may be inaccurate. Consider using '#align homological_complex.ext HomologicalComplex.extₓ'. -/
 theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     (h_d :
       ∀ i j : ι,
@@ -100,33 +114,50 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
 
 end HomologicalComplex
 
+#print ChainComplex /-
 /-- An `α`-indexed chain complex is a `homological_complex`
 in which `d i j ≠ 0` only if `j + 1 = i`.
 -/
 abbrev ChainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type _ :=
   HomologicalComplex V (ComplexShape.down α)
 #align chain_complex ChainComplex
+-/
 
+#print CochainComplex /-
 /-- An `α`-indexed cochain complex is a `homological_complex`
 in which `d i j ≠ 0` only if `i + 1 = j`.
 -/
 abbrev CochainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type _ :=
   HomologicalComplex V (ComplexShape.up α)
 #align cochain_complex CochainComplex
+-/
 
 namespace ChainComplex
 
+/- warning: chain_complex.prev -> ChainComplex.prev is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.down.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toHasAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.down.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
+Case conversion may be inaccurate. Consider using '#align chain_complex.prev ChainComplex.prevₓ'. -/
 @[simp]
 theorem prev (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.down α).prev i = i + 1 :=
   (ComplexShape.down α).prev_eq' rfl
 #align chain_complex.prev ChainComplex.prev
 
+/- warning: chain_complex.next -> ChainComplex.next is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.down.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toCancelAddMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.down.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toAddCancelMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
+Case conversion may be inaccurate. Consider using '#align chain_complex.next ChainComplex.nextₓ'. -/
 @[simp]
 theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down α).next i = i - 1 :=
   (ComplexShape.down α).next_eq' <| sub_add_cancel _ _
 #align chain_complex.next ChainComplex.next
 
+#print ChainComplex.next_nat_zero /-
 @[simp]
 theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by
   classical
@@ -135,27 +166,43 @@ theorem next_nat_zero : (ComplexShape.down ℕ).next 0 = 0 := by
     intro
     apply Nat.noConfusion
 #align chain_complex.next_nat_zero ChainComplex.next_nat_zero
+-/
 
+#print ChainComplex.next_nat_succ /-
 @[simp]
 theorem next_nat_succ (i : ℕ) : (ComplexShape.down ℕ).next (i + 1) = i :=
   (ComplexShape.down ℕ).next_eq' rfl
 #align chain_complex.next_nat_succ ChainComplex.next_nat_succ
+-/
 
 end ChainComplex
 
 namespace CochainComplex
 
+/- warning: cochain_complex.prev -> CochainComplex.prev is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.up.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toCancelAddMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_3 : AddGroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.prev.{u1} α (ComplexShape.up.{u1} α (AddRightCancelMonoid.toAddRightCancelSemigroup.{u1} α (AddCancelMonoid.toAddRightCancelMonoid.{u1} α (AddGroup.toAddCancelMonoid.{u1} α _inst_3))) _inst_4) i) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.prev CochainComplex.prevₓ'. -/
 @[simp]
 theorem prev (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.up α).prev i = i - 1 :=
   (ComplexShape.up α).prev_eq' <| sub_add_cancel _ _
 #align cochain_complex.prev CochainComplex.prev
 
+/- warning: cochain_complex.next -> CochainComplex.next is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.up.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toHasAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (OfNat.mk.{u1} α 1 (One.one.{u1} α _inst_4))))
+but is expected to have type
+  forall (α : Type.{u1}) [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] (i : α), Eq.{succ u1} α (ComplexShape.next.{u1} α (ComplexShape.up.{u1} α _inst_3 _inst_4) i) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.next CochainComplex.nextₓ'. -/
 @[simp]
 theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.up α).next i = i + 1 :=
   (ComplexShape.up α).next_eq' rfl
 #align cochain_complex.next CochainComplex.next
 
+#print CochainComplex.prev_nat_zero /-
 @[simp]
 theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by
   classical
@@ -164,11 +211,14 @@ theorem prev_nat_zero : (ComplexShape.up ℕ).prev 0 = 0 := by
     intro
     apply Nat.noConfusion
 #align cochain_complex.prev_nat_zero CochainComplex.prev_nat_zero
+-/
 
+#print CochainComplex.prev_nat_succ /-
 @[simp]
 theorem prev_nat_succ (i : ℕ) : (ComplexShape.up ℕ).prev (i + 1) = i :=
   (ComplexShape.up ℕ).prev_eq' rfl
 #align cochain_complex.prev_nat_succ CochainComplex.prev_nat_succ
+-/
 
 end CochainComplex
 
@@ -176,6 +226,7 @@ namespace HomologicalComplex
 
 variable {V} {c : ComplexShape ι} (C : HomologicalComplex V c)
 
+#print HomologicalComplex.Hom /-
 /-- A morphism of homological complexes consists of maps between the chain groups,
 commuting with the differentials.
 -/
@@ -184,7 +235,14 @@ structure Hom (A B : HomologicalComplex V c) where
   f : ∀ i, A.pt i ⟶ B.pt i
   comm' : ∀ i j, c.Rel i j → f i ≫ B.d i j = A.d i j ≫ f j := by obviously
 #align homological_complex.hom HomologicalComplex.Hom
+-/
 
+/- warning: homological_complex.hom.comm -> HomologicalComplex.Hom.comm is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {A : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {B : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c A B) (i : ι) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c A B f i) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c B i j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c A j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c A i j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c A B f j))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {A : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {B : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c A B) (i : ι) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f i) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c B i j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c A j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c B j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c A i j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c A B f j))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm HomologicalComplex.Hom.commₓ'. -/
 @[simp, reassoc.1]
 theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
     f.f i ≫ B.d i j = A.d i j ≫ f.f j :=
@@ -197,14 +255,18 @@ theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
 instance (A B : HomologicalComplex V c) : Inhabited (Hom A B) :=
   ⟨{ f := fun i => 0 }⟩
 
+#print HomologicalComplex.id /-
 /-- Identity chain map. -/
 def id (A : HomologicalComplex V c) : Hom A A where f _ := 𝟙 _
 #align homological_complex.id HomologicalComplex.id
+-/
 
+#print HomologicalComplex.comp /-
 /-- Composition of chain maps. -/
 def comp (A B C : HomologicalComplex V c) (φ : Hom A B) (ψ : Hom B C) : Hom A C
     where f i := φ.f i ≫ ψ.f i
 #align homological_complex.comp HomologicalComplex.comp
+-/
 
 section
 
@@ -218,17 +280,35 @@ instance : Category (HomologicalComplex V c)
 
 end
 
+/- warning: homological_complex.id_f -> HomologicalComplex.id_f is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C C (CategoryTheory.CategoryStruct.id.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C) i) (CategoryTheory.CategoryStruct.id.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C C (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C) i) (CategoryTheory.CategoryStruct.id.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))
+Case conversion may be inaccurate. Consider using '#align homological_complex.id_f HomologicalComplex.id_fₓ'. -/
 @[simp]
 theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.pt i) :=
   rfl
 #align homological_complex.id_f HomologicalComplex.id_f
 
+/- warning: homological_complex.comp_f -> HomologicalComplex.comp_f is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ C₃ g i))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ C₃ g i))
+Case conversion may be inaccurate. Consider using '#align homological_complex.comp_f HomologicalComplex.comp_fₓ'. -/
 @[simp]
 theorem comp_f {C₁ C₂ C₃ : HomologicalComplex V c} (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     (f ≫ g).f i = f.f i ≫ g.f i :=
   rfl
 #align homological_complex.comp_f HomologicalComplex.comp_f
 
+/- warning: homological_complex.eq_to_hom_f -> HomologicalComplex.eqToHom_f is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (h : Eq.{max (succ u2) (succ u3) (succ u1)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂) (n : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ (CategoryTheory.eqToHom.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂ h) n) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (congr_fun.{succ u3, succ u2} ι (fun (x : ι) => V) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁) (fun (n : ι) => HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (congr_arg.{max (succ u2) (succ u3) (succ u1), max (succ u3) (succ u2)} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (ι -> V) C₁ C₂ (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c) h) n))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (h : Eq.{max (max (succ u3) (succ u2)) (succ u1)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂) (n : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ (CategoryTheory.eqToHom.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂ h) n) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n) (congr_fun.{succ u1, succ u3} ι (fun (x : ι) => V) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂) (congr_arg.{max (max (succ u1) (succ u3)) (succ u2), max (succ u1) (succ u3)} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (ι -> V) C₁ C₂ (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c) h) n))
+Case conversion may be inaccurate. Consider using '#align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_fₓ'. -/
 @[simp]
 theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι) :
     HomologicalComplex.Hom.f (eqToHom h) n =
@@ -238,6 +318,12 @@ theorem eqToHom_f {C₁ C₂ : HomologicalComplex V c} (h : C₁ = C₂) (n : ι
   rfl
 #align homological_complex.eq_to_hom_f HomologicalComplex.eqToHom_f
 
+/- warning: homological_complex.hom_f_injective -> HomologicalComplex.hom_f_injective is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c}, Function.Injective.{max (succ u3) (succ u1), max (succ u3) (succ u1)} (HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (forall (i : ι), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (fun (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) => HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c}, Function.Injective.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (forall (i : ι), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (fun (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) => HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom_f_injective HomologicalComplex.hom_f_injectiveₓ'. -/
 -- We'll use this later to show that `homological_complex V c` is preadditive when `V` is.
 theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
     Function.Injective fun f : Hom C₁ C₂ => f.f := by tidy
@@ -245,20 +331,34 @@ theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
 
 instance : HasZeroMorphisms (HomologicalComplex V c) where Zero C D := ⟨{ f := fun i => 0 }⟩
 
+/- warning: homological_complex.zero_apply -> HomologicalComplex.zero_f is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (D : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D (OfNat.ofNat.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) 0 (OfNat.mk.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) 0 (Zero.zero.{max u3 u1} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.Limits.hasZeroMorphisms.{u1, u2, u3} ι V _inst_1 _inst_2 c) C D)))) i) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (D : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D (OfNat.ofNat.{max u2 u1} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) 0 (Zero.toOfNat0.{max u2 u1} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) (HomologicalComplex.instZeroHomHomologicalComplexToQuiverToCategoryStructInstCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c C D))) i) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.zero_apply HomologicalComplex.zero_fₓ'. -/
 @[simp]
-theorem zero_apply (C D : HomologicalComplex V c) (i : ι) : (0 : C ⟶ D).f i = 0 :=
+theorem zero_f (C D : HomologicalComplex V c) (i : ι) : (0 : C ⟶ D).f i = 0 :=
   rfl
-#align homological_complex.zero_apply HomologicalComplex.zero_apply
+#align homological_complex.zero_apply HomologicalComplex.zero_f
 
 open ZeroObject
 
+#print HomologicalComplex.zero /-
 /-- The zero complex -/
 noncomputable def zero [HasZeroObject V] : HomologicalComplex V c
     where
   pt i := 0
   d i j := 0
 #align homological_complex.zero HomologicalComplex.zero
+-/
 
+/- warning: homological_complex.is_zero_zero -> HomologicalComplex.isZero_zero is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} [_inst_3 : CategoryTheory.Limits.HasZeroObject.{u1, u2} V _inst_1], CategoryTheory.Limits.IsZero.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.zero.{u1, u2, u3} ι V _inst_1 _inst_2 c _inst_3)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} [_inst_3 : CategoryTheory.Limits.HasZeroObject.{u2, u3} V _inst_1], CategoryTheory.Limits.IsZero.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.zero.{u2, u3, u1} ι V _inst_1 _inst_2 c _inst_3)
+Case conversion may be inaccurate. Consider using '#align homological_complex.is_zero_zero HomologicalComplex.isZero_zeroₓ'. -/
 theorem isZero_zero [HasZeroObject V] : IsZero (zero : HomologicalComplex V c) := by
   refine' ⟨fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩ <;> ext
 #align homological_complex.is_zero_zero HomologicalComplex.isZero_zero
@@ -269,6 +369,12 @@ instance [HasZeroObject V] : HasZeroObject (HomologicalComplex V c) :=
 noncomputable instance [HasZeroObject V] : Inhabited (HomologicalComplex V c) :=
   ⟨zero⟩
 
+/- warning: homological_complex.congr_hom -> HomologicalComplex.congr_hom is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {D : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D} {g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D}, (Eq.{succ (max u3 u1)} (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C D) f g) -> (forall (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D f i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C D g i))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {D : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D} {g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D}, (Eq.{max (succ u2) (succ u1)} (Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C D) f g) -> (forall (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c D i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D f i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C D g i))
+Case conversion may be inaccurate. Consider using '#align homological_complex.congr_hom HomologicalComplex.congr_homₓ'. -/
 theorem congr_hom {C D : HomologicalComplex V c} {f g : C ⟶ D} (w : f = g) (i : ι) :
     f.f i = g.f i :=
   congr_fun (congr_arg Hom.f w) i
@@ -278,6 +384,7 @@ section
 
 variable (V c)
 
+#print HomologicalComplex.eval /-
 /-- The functor picking out the `i`-th object of a complex. -/
 @[simps]
 def eval (i : ι) : HomologicalComplex V c ⥤ V
@@ -285,7 +392,9 @@ def eval (i : ι) : HomologicalComplex V c ⥤ V
   obj C := C.pt i
   map C D f := f.f i
 #align homological_complex.eval HomologicalComplex.eval
+-/
 
+#print HomologicalComplex.forget /-
 /-- The functor forgetting the differential in a complex, obtaining a graded object. -/
 @[simps]
 def forget : HomologicalComplex V c ⥤ GradedObject ι V
@@ -293,13 +402,16 @@ def forget : HomologicalComplex V c ⥤ GradedObject ι V
   obj C := C.pt
   map _ _ f := f.f
 #align homological_complex.forget HomologicalComplex.forget
+-/
 
+#print HomologicalComplex.forgetEval /-
 /-- Forgetting the differentials than picking out the `i`-th object is the same as
 just picking out the `i`-th object. -/
 @[simps]
 def forgetEval (i : ι) : forget V c ⋙ GradedObject.eval i ≅ eval V c i :=
   NatIso.ofComponents (fun X => Iso.refl _) (by tidy)
 #align homological_complex.forget_eval HomologicalComplex.forgetEval
+-/
 
 end
 
@@ -307,6 +419,12 @@ open Classical
 
 noncomputable section
 
+/- warning: homological_complex.d_comp_eq_to_hom -> HomologicalComplex.d_comp_eqToHom is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} {j' : ι} (rij : ComplexShape.Rel.{u3} ι c i j) (rij' : ComplexShape.Rel.{u3} ι c i j'), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (congr_arg.{succ u3, succ u2} ι V j' j (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C) (ComplexShape.next_eq.{u3} ι c i j' j rij' rij)))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} {j' : ι} (rij : ComplexShape.Rel.{u1} ι c i j) (rij' : ComplexShape.Rel.{u1} ι c i j'), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (congr_arg.{succ u1, succ u3} ι V j' j (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C) (ComplexShape.next_eq.{u1} ι c i j' j rij' rij)))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHomₓ'. -/
 /-- If `C.d i j` and `C.d i j'` are both allowed, then we must have `j = j'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -321,6 +439,12 @@ theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
   apply P
 #align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHom
 
+/- warning: homological_complex.eq_to_hom_comp_d -> HomologicalComplex.eqToHom_comp_d is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {i' : ι} {j : ι} (rij : ComplexShape.Rel.{u3} ι c i j) (rij' : ComplexShape.Rel.{u3} ι c i' j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.eqToHom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (congr_arg.{succ u3, succ u2} ι V i i' (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C) (ComplexShape.prev_eq.{u3} ι c i i' j rij rij'))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {i' : ι} {j : ι} (rij : ComplexShape.Rel.{u1} ι c i j) (rij' : ComplexShape.Rel.{u1} ι c i' j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.eqToHom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (congr_arg.{succ u1, succ u3} ι V i i' (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C) (ComplexShape.prev_eq.{u1} ι c i i' j rij rij'))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_dₓ'. -/
 /-- If `C.d i j` and `C.d i' j` are both allowed, then we must have `i = i'`,
 and so the differentials only differ by an `eq_to_hom`.
 -/
@@ -335,6 +459,12 @@ theorem eqToHom_comp_d {i i' j : ι} (rij : c.Rel i j) (rij' : c.Rel i' j) :
   apply P
 #align homological_complex.eq_to_hom_comp_d HomologicalComplex.eqToHom_comp_d
 
+/- warning: homological_complex.kernel_eq_kernel -> HomologicalComplex.kernel_eq_kernel is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u1, u2} V _inst_1 _inst_2] {i : ι} {j : ι} {j' : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (ComplexShape.Rel.{u3} ι c i j') -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j'))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u2, u3} V _inst_1 _inst_2] {i : ι} {j : ι} {j' : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (ComplexShape.Rel.{u1} ι c i j') -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j') (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j') (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j'))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.kernel_eq_kernel HomologicalComplex.kernel_eq_kernelₓ'. -/
 theorem kernel_eq_kernel [HasKernels V] {i j j' : ι} (r : c.Rel i j) (r' : c.Rel i j') :
     kernelSubobject (C.d i j) = kernelSubobject (C.d i j') :=
   by
@@ -342,6 +472,12 @@ theorem kernel_eq_kernel [HasKernels V] {i j j' : ι} (r : c.Rel i j) (r' : c.Re
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_eq_kernel HomologicalComplex.kernel_eq_kernel
 
+/- warning: homological_complex.image_eq_image -> HomologicalComplex.image_eq_image is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u1, u2} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u1, u2} V _inst_1] {i : ι} {i' : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (ComplexShape.Rel.{u3} ι c i' j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i' j))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u2, u3} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u2, u3} V _inst_1] {i : ι} {i' : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (ComplexShape.Rel.{u1} ι c i' j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i') (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i' j))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.image_eq_image HomologicalComplex.image_eq_imageₓ'. -/
 theorem image_eq_image [HasImages V] [HasEqualizers V] {i i' j : ι} (r : c.Rel i j)
     (r' : c.Rel i' j) : imageSubobject (C.d i j) = imageSubobject (C.d i' j) :=
   by
@@ -351,16 +487,21 @@ theorem image_eq_image [HasImages V] [HasEqualizers V] {i i' j : ι} (r : c.Rel
 
 section
 
+#print HomologicalComplex.xPrev /-
 /-- Either `C.X i`, if there is some `i` with `c.rel i j`, or `C.X j`. -/
 abbrev xPrev (j : ι) : V :=
   C.pt (c.prev j)
 #align homological_complex.X_prev HomologicalComplex.xPrev
+-/
 
+#print HomologicalComplex.xPrevIso /-
 /-- If `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X i`. -/
 def xPrevIso {i j : ι} (r : c.Rel i j) : C.xPrev j ≅ C.pt i :=
   eqToIso <| by rw [← c.prev_eq' r]
 #align homological_complex.X_prev_iso HomologicalComplex.xPrevIso
+-/
 
+#print HomologicalComplex.xPrevIsoSelf /-
 /-- If there is no `i` so `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X j`. -/
 def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.pt j :=
   eqToIso <|
@@ -371,17 +512,23 @@ def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.pt j :=
         have : c.prev j = i := c.prev_eq' hi
         rw [this] at h; contradiction)
 #align homological_complex.X_prev_iso_self HomologicalComplex.xPrevIsoSelf
+-/
 
+#print HomologicalComplex.xNext /-
 /-- Either `C.X j`, if there is some `j` with `c.rel i j`, or `C.X i`. -/
 abbrev xNext (i : ι) : V :=
   C.pt (c.next i)
 #align homological_complex.X_next HomologicalComplex.xNext
+-/
 
+#print HomologicalComplex.xNextIso /-
 /-- If `c.rel i j`, then `C.X_next i` is isomorphic to `C.X j`. -/
 def xNextIso {i j : ι} (r : c.Rel i j) : C.xNext i ≅ C.pt j :=
   eqToIso <| by rw [← c.next_eq' r]
 #align homological_complex.X_next_iso HomologicalComplex.xNextIso
+-/
 
+#print HomologicalComplex.xNextIsoSelf /-
 /-- If there is no `j` so `c.rel i j`, then `C.X_next i` is isomorphic to `C.X i`. -/
 def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.pt i :=
   eqToIso <|
@@ -392,66 +539,131 @@ def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.pt i :=
         have : c.next i = j := c.next_eq' hj
         rw [this] at h; contradiction)
 #align homological_complex.X_next_iso_self HomologicalComplex.xNextIsoSelf
+-/
 
+#print HomologicalComplex.dTo /-
 /-- The differential mapping into `C.X j`, or zero if there isn't one.
 -/
 abbrev dTo (j : ι) : C.xPrev j ⟶ C.pt j :=
   C.d (c.prev j) j
 #align homological_complex.d_to HomologicalComplex.dTo
+-/
 
+#print HomologicalComplex.dFrom /-
 /-- The differential mapping out of `C.X i`, or zero if there isn't one.
 -/
 abbrev dFrom (i : ι) : C.pt i ⟶ C.xNext i :=
   C.d i (c.next i)
 #align homological_complex.d_from HomologicalComplex.dFrom
+-/
 
+/- warning: homological_complex.d_to_eq -> HomologicalComplex.dTo_eq is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_eq HomologicalComplex.dTo_eqₓ'. -/
 theorem dTo_eq {i j : ι} (r : c.Rel i j) : C.dTo j = (C.xPrevIso r).Hom ≫ C.d i j :=
   by
   obtain rfl := c.prev_eq' r
   exact (category.id_comp _).symm
 #align homological_complex.d_to_eq HomologicalComplex.dTo_eq
 
+/- warning: homological_complex.d_to_eq_zero -> HomologicalComplex.dTo_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {j : ι}, (Not (ComplexShape.Rel.{u3} ι c (ComplexShape.prev.{u3} ι c j) j)) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j))))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {j : ι}, (Not (ComplexShape.Rel.{u1} ι c (ComplexShape.prev.{u1} ι c j) j)) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_eq_zero HomologicalComplex.dTo_eq_zeroₓ'. -/
 @[simp]
 theorem dTo_eq_zero {j : ι} (h : ¬c.Rel (c.prev j) j) : C.dTo j = 0 :=
   C.shape _ _ h
 #align homological_complex.d_to_eq_zero HomologicalComplex.dTo_eq_zero
 
+/- warning: homological_complex.d_from_eq -> HomologicalComplex.dFrom_eq is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_eq HomologicalComplex.dFrom_eqₓ'. -/
 theorem dFrom_eq {i j : ι} (r : c.Rel i j) : C.dFrom i = C.d i j ≫ (C.xNextIso r).inv :=
   by
   obtain rfl := c.next_eq' r
   exact (category.comp_id _).symm
 #align homological_complex.d_from_eq HomologicalComplex.dFrom_eq
 
+/- warning: homological_complex.d_from_eq_zero -> HomologicalComplex.dFrom_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι}, (Not (ComplexShape.Rel.{u3} ι c i (ComplexShape.next.{u3} ι c i))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι}, (Not (ComplexShape.Rel.{u1} ι c i (ComplexShape.next.{u1} ι c i))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_eq_zero HomologicalComplex.dFrom_eq_zeroₓ'. -/
 @[simp]
 theorem dFrom_eq_zero {i : ι} (h : ¬c.Rel i (c.next i)) : C.dFrom i = 0 :=
   C.shape _ _ h
 #align homological_complex.d_from_eq_zero HomologicalComplex.dFrom_eq_zero
 
+/- warning: homological_complex.X_prev_iso_comp_d_to -> HomologicalComplex.xPrevIso_comp_dTo is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dToₓ'. -/
 @[simp, reassoc.1]
 theorem xPrevIso_comp_dTo {i j : ι} (r : c.Rel i j) : (C.xPrevIso r).inv ≫ C.dTo j = C.d i j := by
   simp [C.d_to_eq r]
 #align homological_complex.X_prev_iso_comp_d_to HomologicalComplex.xPrevIso_comp_dTo
 
+/- warning: homological_complex.X_prev_iso_self_comp_d_to -> HomologicalComplex.xPrevIsoSelf_comp_dTo is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {j : ι} (h : Not (ComplexShape.Rel.{u3} ι c (ComplexShape.prev.{u3} ι c j) j)), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrevIsoSelf.{u1, u2, u3} ι V _inst_1 _inst_2 c C j h)) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {j : ι} (h : Not (ComplexShape.Rel.{u1} ι c (ComplexShape.prev.{u1} ι c j) j)), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xPrevIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C j h)) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dToₓ'. -/
 @[simp, reassoc.1]
 theorem xPrevIsoSelf_comp_dTo {j : ι} (h : ¬c.Rel (c.prev j) j) :
     (C.xPrevIsoSelf h).inv ≫ C.dTo j = 0 := by simp [h]
 #align homological_complex.X_prev_iso_self_comp_d_to HomologicalComplex.xPrevIsoSelf_comp_dTo
 
+/- warning: homological_complex.d_from_comp_X_next_iso -> HomologicalComplex.dFrom_comp_xNextIso is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j r))) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} {j : ι} (r : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j r))) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIsoₓ'. -/
 @[simp, reassoc.1]
 theorem dFrom_comp_xNextIso {i j : ι} (r : c.Rel i j) : C.dFrom i ≫ (C.xNextIso r).Hom = C.d i j :=
   by simp [C.d_from_eq r]
 #align homological_complex.d_from_comp_X_next_iso HomologicalComplex.dFrom_comp_xNextIso
 
+/- warning: homological_complex.d_from_comp_X_next_iso_self -> HomologicalComplex.dFrom_comp_xNextIsoSelf is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) {i : ι} (h : Not (ComplexShape.Rel.{u3} ι c i (ComplexShape.next.{u3} ι c i))), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNextIsoSelf.{u1, u2, u3} ι V _inst_1 _inst_2 c C i h))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) {i : ι} (h : Not (ComplexShape.Rel.{u1} ι c i (ComplexShape.next.{u1} ι c i))), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNextIsoSelf.{u2, u3, u1} ι V _inst_1 _inst_2 c C i h))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelfₓ'. -/
 @[simp, reassoc.1]
 theorem dFrom_comp_xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) :
     C.dFrom i ≫ (C.xNextIsoSelf h).Hom = 0 := by simp [h]
 #align homological_complex.d_from_comp_X_next_iso_self HomologicalComplex.dFrom_comp_xNextIsoSelf
 
+/- warning: homological_complex.d_to_comp_d_from -> HomologicalComplex.dTo_comp_dFrom is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.d_to_comp_d_from HomologicalComplex.dTo_comp_dFromₓ'. -/
 @[simp]
 theorem dTo_comp_dFrom (j : ι) : C.dTo j ≫ C.dFrom j = 0 :=
   C.d_comp_d _ _ _
 #align homological_complex.d_to_comp_d_from HomologicalComplex.dTo_comp_dFrom
 
+/- warning: homological_complex.kernel_from_eq_kernel -> HomologicalComplex.kernel_from_eq_kernel is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u1, u2} V _inst_1 _inst_2] {i : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) _inst_2 (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C i))) (CategoryTheory.Limits.kernelSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u1, u2} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasKernels.{u2, u3} V _inst_1 _inst_2] {i : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i)) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) _inst_2 (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C i))) (CategoryTheory.Limits.kernelSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) _inst_2 (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasKernels.has_limit.{u2, u3} V _inst_1 _inst_2 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.kernel_from_eq_kernel HomologicalComplex.kernel_from_eq_kernelₓ'. -/
 theorem kernel_from_eq_kernel [HasKernels V] {i j : ι} (r : c.Rel i j) :
     kernelSubobject (C.dFrom i) = kernelSubobject (C.d i j) :=
   by
@@ -459,6 +671,12 @@ theorem kernel_from_eq_kernel [HasKernels V] {i j : ι} (r : c.Rel i j) :
   apply kernel_subobject_comp_mono
 #align homological_complex.kernel_from_eq_kernel HomologicalComplex.kernel_from_eq_kernel
 
+/- warning: homological_complex.image_to_eq_image -> HomologicalComplex.image_to_eq_image is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u1, u2} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u1, u2} V _inst_1] {i : ι} {j : ι}, (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ (max u2 u1)} (CategoryTheory.Subobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C j))) (CategoryTheory.Limits.imageSubobject.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.hasImage.{u1, u2} V _inst_1 _inst_3 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C i j))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) [_inst_3 : CategoryTheory.Limits.HasImages.{u2, u3} V _inst_1] [_inst_4 : CategoryTheory.Limits.HasEqualizers.{u2, u3} V _inst_1] {i : ι} {j : ι}, (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{max (succ u3) (succ u2)} (CategoryTheory.Subobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j)) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C j))) (CategoryTheory.Limits.imageSubobject.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j) (CategoryTheory.Limits.HasImages.has_image.{u2, u3} V _inst_1 _inst_3 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C i j))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.image_to_eq_image HomologicalComplex.image_to_eq_imageₓ'. -/
 theorem image_to_eq_image [HasImages V] [HasEqualizers V] {i j : ι} (r : c.Rel i j) :
     imageSubobject (C.dTo j) = imageSubobject (C.d i j) :=
   by
@@ -472,12 +690,15 @@ namespace Hom
 
 variable {C₁ C₂ C₃ : HomologicalComplex V c}
 
+#print HomologicalComplex.Hom.isoApp /-
 /-- The `i`-th component of an isomorphism of chain complexes. -/
 @[simps]
 def isoApp (f : C₁ ≅ C₂) (i : ι) : C₁.pt i ≅ C₂.pt i :=
   (eval V c i).mapIso f
 #align homological_complex.hom.iso_app HomologicalComplex.Hom.isoApp
+-/
 
+#print HomologicalComplex.Hom.isoOfComponents /-
 /-- Construct an isomorphism of chain complexes from isomorphism of the objects
 which commute with the differentials. -/
 @[simps]
@@ -502,7 +723,14 @@ def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     ext i
     exact (f i).inv_hom_id
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
+-/
 
+/- warning: homological_complex.hom.iso_of_components_app -> HomologicalComplex.Hom.isoOfComponents_app is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : forall (i : ι), CategoryTheory.Iso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (hf : forall (i : ι) (j : ι), (ComplexShape.Rel.{u3} ι c i j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (f i)) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (f j))))) (i : ι), Eq.{succ u1} (CategoryTheory.Iso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.isoApp.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ (HomologicalComplex.Hom.isoOfComponents.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f hf) i) (f i)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : forall (i : ι), CategoryTheory.Iso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (hf : forall (i : ι) (j : ι), (ComplexShape.Rel.{u1} ι c i j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (f i)) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.d.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (f j))))) (i : ι), Eq.{succ u2} (CategoryTheory.Iso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.isoApp.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ (HomologicalComplex.Hom.isoOfComponents.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f hf) i) (f i)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_appₓ'. -/
 @[simp]
 theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) (i : ι) :
@@ -511,6 +739,12 @@ theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
   simp
 #align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_app
 
+/- warning: homological_complex.hom.is_iso_of_components -> HomologicalComplex.Hom.isIso_of_components is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) [_inst_3 : forall (n : ι), CategoryTheory.IsIso.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ n) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f n)], CategoryTheory.IsIso.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c) C₁ C₂ f
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) [_inst_3 : forall (n : ι), CategoryTheory.IsIso.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ n) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ n) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f n)], CategoryTheory.IsIso.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) C₁ C₂ f
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.is_iso_of_components HomologicalComplex.Hom.isIso_of_componentsₓ'. -/
 theorem isIso_of_components (f : C₁ ⟶ C₂) [∀ n : ι, IsIso (f.f n)] : IsIso f :=
   by
   convert is_iso.of_iso (HomologicalComplex.Hom.isoOfComponents (fun n => as_iso (f.f n)) (by tidy))
@@ -521,11 +755,19 @@ theorem isIso_of_components (f : C₁ ⟶ C₂) [∀ n : ι, IsIso (f.f n)] : Is
 /-! Lemmas relating chain maps and `d_to`/`d_from`. -/
 
 
+#print HomologicalComplex.Hom.prev /-
 /-- `f.prev j` is `f.f i` if there is some `r i j`, and `f.f j` otherwise. -/
 abbrev prev (f : Hom C₁ C₂) (j : ι) : C₁.xPrev j ⟶ C₂.xPrev j :=
   f.f _
 #align homological_complex.hom.prev HomologicalComplex.Hom.prev
+-/
 
+/- warning: homological_complex.hom.prev_eq -> HomologicalComplex.Hom.prev_eq is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrevIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j w))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xPrevIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j w))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.prev_eq HomologicalComplex.Hom.prev_eqₓ'. -/
 theorem prev_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.prev j = (C₁.xPrevIso w).Hom ≫ f.f i ≫ (C₂.xPrevIso w).inv :=
   by
@@ -533,11 +775,19 @@ theorem prev_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
   simp only [X_prev_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id]
 #align homological_complex.hom.prev_eq HomologicalComplex.Hom.prev_eq
 
+#print HomologicalComplex.Hom.next /-
 /-- `f.next i` is `f.f j` if there is some `r i j`, and `f.f j` otherwise. -/
 abbrev next (f : Hom C₁ C₂) (i : ι) : C₁.xNext i ⟶ C₂.xNext i :=
   f.f _
 #align homological_complex.hom.next HomologicalComplex.Hom.next
+-/
 
+/- warning: homological_complex.hom.next_eq -> HomologicalComplex.Hom.next_eq is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u3} ι c i j), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (CategoryTheory.Iso.hom.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.Iso.inv.{u1, u2} V _inst_1 (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNextIso.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i j w))))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) {i : ι} {j : ι} (w : ComplexShape.Rel.{u1} ι c i j), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (CategoryTheory.Iso.hom.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i j w)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (CategoryTheory.Iso.inv.{u2, u3} V _inst_1 (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.xNextIso.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i j w))))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eqₓ'. -/
 theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
     f.next i = (C₁.xNextIso w).Hom ≫ f.f j ≫ (C₂.xNextIso w).inv :=
   by
@@ -545,56 +795,108 @@ theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
   simp only [X_next_iso, eq_to_iso_refl, iso.refl_hom, iso.refl_inv, id_comp, comp_id]
 #align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eq
 
+/- warning: homological_complex.hom.comm_from -> HomologicalComplex.Hom.comm_from is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_fromₓ'. -/
 @[simp, reassoc.1, elementwise]
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
 
+/- warning: homological_complex.hom.comm_to -> HomologicalComplex.Hom.comm_to is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_toₓ'. -/
 @[simp, reassoc.1, elementwise]
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
 #align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_to
 
+#print HomologicalComplex.Hom.sqFrom /-
 /-- A morphism of chain complexes
 induces a morphism of arrows of the differentials out of each object.
 -/
 def sqFrom (f : Hom C₁ C₂) (i : ι) : Arrow.mk (C₁.dFrom i) ⟶ Arrow.mk (C₂.dFrom i) :=
   Arrow.homMk (f.comm_from i)
 #align homological_complex.hom.sq_from HomologicalComplex.Hom.sqFrom
+-/
 
+/- warning: homological_complex.hom.sq_from_left -> HomologicalComplex.Hom.sqFrom_left is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_left HomologicalComplex.Hom.sqFrom_leftₓ'. -/
 @[simp]
 theorem sqFrom_left (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).left = f.f i :=
   rfl
 #align homological_complex.hom.sq_from_left HomologicalComplex.Hom.sqFrom_left
 
+/- warning: homological_complex.hom.sq_from_right -> HomologicalComplex.Hom.sqFrom_right is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.next.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)))) (CategoryTheory.CommaMorphism.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)) (HomologicalComplex.Hom.next.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_right HomologicalComplex.Hom.sqFrom_rightₓ'. -/
 @[simp]
 theorem sqFrom_right (f : Hom C₁ C₂) (i : ι) : (f.sqFrom i).right = f.next i :=
   rfl
 #align homological_complex.hom.sq_from_right HomologicalComplex.Hom.sqFrom_right
 
+/- warning: homological_complex.hom.sq_from_id -> HomologicalComplex.Hom.sqFrom_id is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} (C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1))) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i))) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₁ (CategoryTheory.CategoryStruct.id.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁) i) (CategoryTheory.CategoryStruct.id.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} (C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1))) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i))) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₁ (CategoryTheory.CategoryStruct.id.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁) i) (CategoryTheory.CategoryStruct.id.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_id HomologicalComplex.Hom.sqFrom_idₓ'. -/
 @[simp]
 theorem sqFrom_id (C₁ : HomologicalComplex V c) (i : ι) : sqFrom (𝟙 C₁) i = 𝟙 _ :=
   rfl
 #align homological_complex.hom.sq_from_id HomologicalComplex.Hom.sqFrom_id
 
+/- warning: homological_complex.hom.sq_from_comp -> HomologicalComplex.Hom.sqFrom_comp is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1))) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i))) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u1, max u2 u1} (CategoryTheory.Arrow.{u1, u2} V _inst_1) (CategoryTheory.Arrow.category.{u1, u2} V _inst_1)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.sqFrom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ C₃ g i))
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₃ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₁ C₂) (g : Quiver.Hom.{max (succ u2) (succ u1), max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.CategoryStruct.toQuiver.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c))) C₂ C₃) (i : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.CategoryStruct.toQuiver.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1))) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i))) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₃ (CategoryTheory.CategoryStruct.comp.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (CategoryTheory.Category.toCategoryStruct.{max u2 u1, max (max u3 u2) u1} (HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c) (HomologicalComplex.instCategoryHomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c)) C₁ C₂ C₃ f g) i) (CategoryTheory.CategoryStruct.comp.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.Category.toCategoryStruct.{u2, max u3 u2} (CategoryTheory.Arrow.{u2, u3} V _inst_1) (CategoryTheory.instCategoryArrow.{u2, u3} V _inst_1)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ i)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.xNext.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i) (HomologicalComplex.dFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₃ i)) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f i) (HomologicalComplex.Hom.sqFrom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ C₃ g i))
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_from_comp HomologicalComplex.Hom.sqFrom_compₓ'. -/
 @[simp]
 theorem sqFrom_comp (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     sqFrom (f ≫ g) i = sqFrom f i ≫ sqFrom g i :=
   rfl
 #align homological_complex.hom.sq_from_comp HomologicalComplex.Hom.sqFrom_comp
 
+#print HomologicalComplex.Hom.sqTo /-
 /-- A morphism of chain complexes
 induces a morphism of arrows of the differentials into each object.
 -/
 def sqTo (f : Hom C₁ C₂) (j : ι) : Arrow.mk (C₁.dTo j) ⟶ Arrow.mk (C₂.dTo j) :=
   Arrow.homMk (f.comm_to j)
 #align homological_complex.hom.sq_to HomologicalComplex.Hom.sqTo
+-/
 
+/- warning: homological_complex.hom.sq_to_left -> HomologicalComplex.Hom.sqTo_left is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.left.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.prev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.left.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.prev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_to_left HomologicalComplex.Hom.sqTo_leftₓ'. -/
 @[simp]
 theorem sqTo_left (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).left = f.prev j :=
   rfl
 #align homological_complex.hom.sq_to_left HomologicalComplex.Hom.sqTo_left
 
+/- warning: homological_complex.hom.sq_to_right -> HomologicalComplex.Hom.sqTo_right is a dubious translation:
+lean 3 declaration is
+  forall {ι : Type.{u3}} {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {c : ComplexShape.{u3} ι} {C₁ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u1, u2, u3} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.right.{u1, u1, u1, u2, u2, u2} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Functor.id.{u1, u2} V _inst_1) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u1, u2} V _inst_1 (HomologicalComplex.xPrev.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.x.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.f.{u1, u2, u3} ι V _inst_1 _inst_2 c C₁ C₂ f j)
+but is expected to have type
+  forall {ι : Type.{u1}} {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {c : ComplexShape.{u1} ι} {C₁ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} {C₂ : HomologicalComplex.{u2, u3, u1} ι V _inst_1 _inst_2 c} (f : HomologicalComplex.Hom.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂) (j : ι), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j))) (CategoryTheory.Comma.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)))) (CategoryTheory.CommaMorphism.right.{u2, u2, u2, u3, u3, u3} V _inst_1 V _inst_1 V _inst_1 (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Functor.id.{u2, u3} V _inst_1) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ j)) (CategoryTheory.Arrow.mk.{u2, u3} V _inst_1 (HomologicalComplex.xPrev.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.X.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j) (HomologicalComplex.dTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₂ j)) (HomologicalComplex.Hom.sqTo.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)) (HomologicalComplex.Hom.f.{u2, u3, u1} ι V _inst_1 _inst_2 c C₁ C₂ f j)
+Case conversion may be inaccurate. Consider using '#align homological_complex.hom.sq_to_right HomologicalComplex.Hom.sqTo_rightₓ'. -/
 @[simp]
 theorem sqTo_right (f : Hom C₁ C₂) (j : ι) : (f.sqTo j).right = f.f j :=
   rfl
@@ -610,6 +912,12 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
+/- warning: chain_complex.of -> ChainComplex.of is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) -> (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n))))) -> (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align chain_complex.of ChainComplex.ofₓ'. -/
 /-- Construct an `α`-indexed chain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0) : ChainComplex V α :=
@@ -624,11 +932,23 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
 
 variable (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0)
 
+/- warning: chain_complex.of_X -> ChainComplex.of_x is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (n : α), Eq.{succ u2} V (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) (n : α), Eq.{succ u3} V (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
+Case conversion may be inaccurate. Consider using '#align chain_complex.of_X ChainComplex.of_xₓ'. -/
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align chain_complex.of_X ChainComplex.of_x
 
+/- warning: chain_complex.of_d -> ChainComplex.of_d is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (j : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) j) (d j)
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) (j : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) j) (d j)
+Case conversion may be inaccurate. Consider using '#align chain_complex.of_d ChainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j :=
   by
@@ -636,6 +956,12 @@ theorem of_d (j : α) : (of X d sq).d (j + 1) j = d j :=
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.of_d ChainComplex.of_d
 
+/- warning: chain_complex.of_d_ne -> ChainComplex.of_d_ne is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) {i : α} {j : α}, (Ne.{succ u3} α i (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j))))))
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n)) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X n))))) {i : α} {j : α}, (Ne.{succ u1} α i (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.down.{u1} α _inst_3 _inst_4) (ChainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)))))
+Case conversion may be inaccurate. Consider using '#align chain_complex.of_d_ne ChainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i ≠ j + 1) : (of X d sq).d i j = 0 :=
   by
   dsimp [of]
@@ -651,6 +977,12 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n + 1) ≫ d_X n = 0) (Y : α → V)
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
 
+/- warning: chain_complex.of_hom -> ChainComplex.ofHom is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (X n)))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n)) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4))) (Y n)))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X i) (Y i) (d_X i) (f i))) -> (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4)))) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X n))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y n)) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y n))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X i) (Y i) (d_X i) (f i))) -> (Quiver.Hom.{max (succ u1) (succ u3), max (max u3 u2) u1} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max u2 u1) u3} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max u2 u1) u3} (ChainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.down.{u3} α _inst_3 _inst_4)))) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (ChainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+Case conversion may be inaccurate. Consider using '#align chain_complex.of_hom ChainComplex.ofHomₓ'. -/
 /-- A constructor for chain maps between `α`-indexed chain complexes built using `chain_complex.of`,
 from a dependently typed collection of morphisms.
 -/
@@ -670,6 +1002,7 @@ end OfHom
 
 section Mk
 
+#print ChainComplex.MkStruct /-
 /-- Auxiliary structure for setting up the recursion in `mk`.
 This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
 results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
@@ -681,25 +1014,23 @@ structure MkStruct where
   d₁ : X₂ ⟶ X₁
   s : d₁ ≫ d₀ = 0
 #align chain_complex.mk_struct ChainComplex.MkStruct
+-/
 
 variable {V}
 
+#print ChainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
 def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align chain_complex.mk_struct.flat ChainComplex.MkStruct.flat
+-/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s : d₁ ≫ d₀ = 0)
   (succ :
     ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
       Σ'(X₃ : V)(d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
 
-/- warning: chain_complex.mk_aux -> ChainComplex.mkAux is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (X₀ : V) (X₁ : V) (X₂ : V) (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))) -> (forall (t : PSigma.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀)))))))))), PSigma.{succ u2, succ u1} V (fun (X₃ : V) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)))) (fun (d₂ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₃ (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) d₂ (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))))) t)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₃ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₃ (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₀) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₁) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) -> Nat -> (ChainComplex.MkStruct.{u1, u2} V _inst_1 _inst_2)
-but is expected to have type
-  forall {V : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u1} V _inst_1] (X₀ : V) (X₁ : V) (X₂ : V) (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁), (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))) -> (forall (t : PSigma.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀)))))))))), PSigma.{succ u1, succ u2} V (fun (X₃ : V) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)))) (fun (d₂ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₃ (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) d₂ (PSigma.fst.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ (PSigma.fst.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t) d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))))) t)))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₃ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₃ (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t) d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₀) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₁) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₂ X₁ X₀ d₁ d₀) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₂ X₀) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₂ X₀))))))) t))))))))) -> Nat -> (ChainComplex.MkStruct.{u2, u1} V _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align chain_complex.mk_aux ChainComplex.mkAuxₓ'. -/
+#print ChainComplex.mkAux /-
 /-- Auxiliary definition for `mk`. -/
 def mkAux : ∀ n : ℕ, MkStruct V
   | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
@@ -707,7 +1038,9 @@ def mkAux : ∀ n : ℕ, MkStruct V
     let p := mk_aux n
     ⟨p.x₁, p.x₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
 #align chain_complex.mk_aux ChainComplex.mkAux
+-/
 
+#print ChainComplex.mk /-
 /-- A inductive constructor for `ℕ`-indexed chain complexes.
 
 You provide explicitly the first two differentials,
@@ -720,36 +1053,48 @@ def mk : ChainComplex V ℕ :=
   of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).x₀) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).d₀)
     fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).s
 #align chain_complex.mk ChainComplex.mk
+-/
 
+#print ChainComplex.mk_X_0 /-
 @[simp]
-theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
+theorem mk_X_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
   rfl
-#align chain_complex.mk_X_0 ChainComplex.mk_x_0
+#align chain_complex.mk_X_0 ChainComplex.mk_X_0
+-/
 
+#print ChainComplex.mk_X_1 /-
 @[simp]
-theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
+theorem mk_X_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
   rfl
-#align chain_complex.mk_X_1 ChainComplex.mk_x_1
+#align chain_complex.mk_X_1 ChainComplex.mk_X_1
+-/
 
+#print ChainComplex.mk_X_2 /-
 @[simp]
-theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
+theorem mk_X_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
   rfl
-#align chain_complex.mk_X_2 ChainComplex.mk_x_2
+#align chain_complex.mk_X_2 ChainComplex.mk_X_2
+-/
 
+#print ChainComplex.mk_d_1_0 /-
 @[simp]
 theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 0 = d₀ :=
   by
   change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk_d_1_0 ChainComplex.mk_d_1_0
+-/
 
+#print ChainComplex.mk_d_2_0 /-
 @[simp]
 theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ :=
   by
   change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_0
+-/
 
+#print ChainComplex.mk' /-
 -- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
 /-- A simpler inductive constructor for `ℕ`-indexed chain complexes.
 
@@ -763,25 +1108,32 @@ def mk' (X₀ X₁ : V) (d : X₁ ⟶ X₀)
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align chain_complex.mk' ChainComplex.mk'
+-/
 
 variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
 
+#print ChainComplex.mk'_X_0 /-
 @[simp]
-theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
+theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
   rfl
-#align chain_complex.mk'_X_0 ChainComplex.mk'_x_0
+#align chain_complex.mk'_X_0 ChainComplex.mk'_X_0
+-/
 
+#print ChainComplex.mk'_X_1 /-
 @[simp]
-theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
+theorem mk'_X_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
   rfl
-#align chain_complex.mk'_X_1 ChainComplex.mk'_x_1
+#align chain_complex.mk'_X_1 ChainComplex.mk'_X_1
+-/
 
+#print ChainComplex.mk'_d_1_0 /-
 @[simp]
 theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 1 0 = d₀ :=
   by
   change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
   rw [if_pos rfl, category.id_comp]
 #align chain_complex.mk'_d_1_0 ChainComplex.mk'_d_1_0
+-/
 
 -- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
 end Mk
@@ -797,12 +1149,7 @@ variable {V} (P Q : ChainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt 1
           f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f),
       Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
 
-/- warning: chain_complex.mk_hom_aux -> ChainComplex.mkHomAux is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) one (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) zero)) -> (forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f)))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))))) -> (forall (n : Nat), PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))))
-but is expected to have type
-  forall {V : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u1} V _inst_1] (P : ChainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : ChainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) one (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) zero)) -> (forall (n : Nat) (p : PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f)))), PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))) (PSigma.snd.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))))) -> (forall (n : Nat), PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))))
-Case conversion may be inaccurate. Consider using '#align chain_complex.mk_hom_aux ChainComplex.mkHomAuxₓ'. -/
+#print ChainComplex.mkHomAux /-
 /-- An auxiliary construction for `mk_hom`.
 
 Here we build by induction a family of commutative squares,
@@ -817,7 +1164,9 @@ def mkHomAux :
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
 #align chain_complex.mk_hom_aux ChainComplex.mkHomAux
+-/
 
+#print ChainComplex.mkHom /-
 /-- A constructor for chain maps between `ℕ`-indexed chain complexes,
 working by induction on commutative squares.
 
@@ -833,17 +1182,28 @@ def mkHom : P ⟶ Q where
     rintro (rfl : m + 1 = n)
     exact (mk_hom_aux P Q zero one one_zero_comm succ m).2.2
 #align chain_complex.mk_hom ChainComplex.mkHom
+-/
 
+#print ChainComplex.mkHom_f_0 /-
 @[simp]
 theorem mkHom_f_0 : (mkHom P Q zero one one_zero_comm succ).f 0 = zero :=
   rfl
 #align chain_complex.mk_hom_f_0 ChainComplex.mkHom_f_0
+-/
 
+#print ChainComplex.mkHom_f_1 /-
 @[simp]
 theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
   rfl
 #align chain_complex.mk_hom_f_1 ChainComplex.mkHom_f_1
+-/
 
+/- warning: chain_complex.mk_hom_f_succ_succ -> ChainComplex.mkHom_f_succ_succ is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) one (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) zero)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f)))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) p))))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n))))))) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) n)))))
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Q : ChainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) one (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) zero)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f)))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) p))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) p))))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n))))))) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) f))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) f' (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.down.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (ChainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) n)))))
+Case conversion may be inaccurate. Consider using '#align chain_complex.mk_hom_f_succ_succ ChainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
@@ -866,6 +1226,12 @@ section Of
 
 variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
+/- warning: cochain_complex.of -> CochainComplex.of is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) -> (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))), (forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) -> (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4)
+Case conversion may be inaccurate. Consider using '#align cochain_complex.of CochainComplex.ofₓ'. -/
 /-- Construct an `α`-indexed cochain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0) :
@@ -884,11 +1250,23 @@ def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n +
 
 variable (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0)
 
+/- warning: cochain_complex.of_X -> CochainComplex.of_x is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (n : α), Eq.{succ u2} V (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) (n : α), Eq.{succ u3} V (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) n) (X n)
+Case conversion may be inaccurate. Consider using '#align cochain_complex.of_X CochainComplex.of_xₓ'. -/
 @[simp]
 theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align cochain_complex.of_X CochainComplex.of_x
 
+/- warning: cochain_complex.of_d -> CochainComplex.of_d is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (j : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) j (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d j)
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) (j : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) j (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d j)
+Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d CochainComplex.of_dₓ'. -/
 @[simp]
 theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j :=
   by
@@ -896,6 +1274,12 @@ theorem of_d (j : α) : (of X d sq).d j (j + 1) = d j :=
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.of_d CochainComplex.of_d
 
+/- warning: cochain_complex.of_d_ne -> CochainComplex.of_d_ne is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d n) (d (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) {i : α} {j : α}, (Ne.{succ u3} α (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) j) -> (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.x.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j))))))
+but is expected to have type
+  forall {V : Type.{u3}} [_inst_1 : CategoryTheory.Category.{u2, u3} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u3} V _inst_1] {α : Type.{u1}} [_inst_3 : AddRightCancelSemigroup.{u1} α] [_inst_4 : One.{u1} α] [_inst_5 : DecidableEq.{succ u1} α] (X : α -> V) (d : forall (n : α), Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (sq : forall (n : α), Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))) (d n) (d (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) n (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4)))))))) {i : α} {j : α}, (Ne.{succ u1} α (HAdd.hAdd.{u1, u1, u1} α α α (instHAdd.{u1} α (AddSemigroup.toAdd.{u1} α (AddRightCancelSemigroup.toAddSemigroup.{u1} α _inst_3))) i (OfNat.ofNat.{u1} α 1 (One.toOfNat1.{u1} α _inst_4))) j) -> (Eq.{succ u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (HomologicalComplex.d.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i j) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) 0 (Zero.toOfNat0.{u2} (Quiver.Hom.{succ u2, u3} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u3} V (CategoryTheory.Category.toCategoryStruct.{u2, u3} V _inst_1)) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u2, u3} V _inst_1 _inst_2 (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) i) (HomologicalComplex.X.{u2, u3, u1} α V _inst_1 _inst_2 (ComplexShape.up.{u1} α _inst_3 _inst_4) (CochainComplex.of.{u2, u3, u1} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d sq) j)))))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.of_d_ne CochainComplex.of_d_neₓ'. -/
 theorem of_d_ne {i j : α} (h : i + 1 ≠ j) : (of X d sq).d i j = 0 :=
   by
   dsimp [of]
@@ -911,6 +1295,12 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n ≫ d_X (n + 1) = 0) (Y : α → V)
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
 
+/- warning: cochain_complex.of_hom -> CochainComplex.ofHom is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))) (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (One.one.{u3} α _inst_4)) (One.one.{u3} α _inst_4)))))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (Y i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (f i) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))) (d_X i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toHasAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (OfNat.mk.{u3} α 1 (One.one.{u3} α _inst_4))))))) -> (Quiver.Hom.{succ (max u3 u1), max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u3 u1, max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u3 u1, max u2 u3 u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.CategoryTheory.category.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4)))) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] {α : Type.{u3}} [_inst_3 : AddRightCancelSemigroup.{u3} α] [_inst_4 : One.{u3} α] [_inst_5 : DecidableEq.{succ u3} α] (X : α -> V) (d_X : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (sq_X : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X n) (d_X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (X n) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) (Y : α -> V) (d_Y : forall (n : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (sq_Y : forall (n : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_Y n) (d_Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) 0 (Zero.toOfNat0.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.Limits.HasZeroMorphisms.Zero.{u1, u2} V _inst_1 _inst_2 (Y n) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) n (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))) (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))))) (f : forall (i : α), Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y i)), (forall (i : α), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (X i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (Y i) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (f i) (d_Y i)) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (X i) (X (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (Y (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))) (d_X i) (f (HAdd.hAdd.{u3, u3, u3} α α α (instHAdd.{u3} α (AddSemigroup.toAdd.{u3} α (AddRightCancelSemigroup.toAddSemigroup.{u3} α _inst_3))) i (OfNat.ofNat.{u3} α 1 (One.toOfNat1.{u3} α _inst_4)))))) -> (Quiver.Hom.{max (succ u1) (succ u3), max (max u3 u2) u1} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.CategoryStruct.toQuiver.{max u1 u3, max (max u2 u1) u3} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (CategoryTheory.Category.toCategoryStruct.{max u1 u3, max (max u2 u1) u3} (CochainComplex.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4) (HomologicalComplex.instCategoryHomologicalComplex.{u1, u2, u3} α V _inst_1 _inst_2 (ComplexShape.up.{u3} α _inst_3 _inst_4)))) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) X d_X sq_X) (CochainComplex.of.{u1, u2, u3} V _inst_1 _inst_2 α _inst_3 _inst_4 (fun (a : α) (b : α) => _inst_5 a b) Y d_Y sq_Y))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.of_hom CochainComplex.ofHomₓ'. -/
 /--
 A constructor for chain maps between `α`-indexed cochain complexes built using `cochain_complex.of`,
 from a dependently typed collection of morphisms.
@@ -931,6 +1321,7 @@ end OfHom
 
 section Mk
 
+#print CochainComplex.MkStruct /-
 /-- Auxiliary structure for setting up the recursion in `mk`.
 This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
 results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
@@ -942,25 +1333,23 @@ structure MkStruct where
   d₁ : X₁ ⟶ X₂
   s : d₀ ≫ d₁ = 0
 #align cochain_complex.mk_struct CochainComplex.MkStruct
+-/
 
 variable {V}
 
+#print CochainComplex.MkStruct.flat /-
 /-- Flatten to a tuple. -/
 def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
   ⟨t.x₀, t.x₁, t.x₂, t.d₀, t.d₁, t.s⟩
 #align cochain_complex.mk_struct.flat CochainComplex.MkStruct.flat
+-/
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
   (succ :
     ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
       Σ'(X₃ : V)(d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
 
-/- warning: cochain_complex.mk_aux -> CochainComplex.mkAux is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (X₀ : V) (X₁ : V) (X₂ : V) (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))) -> (forall (t : PSigma.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂)))))))))), PSigma.{succ u2, succ u1} V (fun (X₃ : V) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃) (fun (d₂ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₃) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃ (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))))))))) (PSigma.snd.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))))))) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t))))))))) (PSigma.snd.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))))) t))))) d₂) (OfNat.ofNat.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) 0 (OfNat.mk.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) 0 (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 (PSigma.fst.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u2, max 1 (succ u2) 1 (succ u2) (succ u1)} V (fun (X₀ : V) => PSigma.{succ u2, max 1 (succ u2) (succ u1)} V (fun (X₁ : V) => PSigma.{succ u2, succ u1} V (fun (X₂ : V) => PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₁) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₁ X₂) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u1, u2} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃))))))) -> Nat -> (CochainComplex.MkStruct.{u1, u2} V _inst_1 _inst_2)
-but is expected to have type
-  forall {V : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u1} V _inst_1] (X₀ : V) (X₁ : V) (X₂ : V) (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂), (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))) -> (forall (t : PSigma.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂)))))))))), PSigma.{succ u1, succ u2} V (fun (X₃ : V) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃) (fun (d₂ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₃) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) X₃ (PSigma.fst.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (PSigma.fst.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))))))))) (PSigma.snd.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))))))) (PSigma.snd.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)))) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t))))))))) (PSigma.snd.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t)) X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂))))))) (PSigma.snd.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t) X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))))) t))))) d₂) (OfNat.ofNat.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) 0 (OfNat.mk.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) 0 (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 (PSigma.fst.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t) X₂)))))) (PSigma.snd.{succ u1, max 1 (succ u1) 1 (succ u1) (succ u2)} V (fun (X₀ : V) => PSigma.{succ u1, max 1 (succ u1) (succ u2)} V (fun (X₁ : V) => PSigma.{succ u1, succ u2} V (fun (X₂ : V) => PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) (fun (d₀ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₁) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) (fun (d₁ : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₁ X₂) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) X₀ X₁ X₂ d₀ d₁) (Zero.zero.{u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) X₀ X₂) (CategoryTheory.Limits.HasZeroMorphisms.hasZero.{u2, u1} V _inst_1 _inst_2 X₀ X₂))))))) t)) X₃))))))) -> Nat -> (CochainComplex.MkStruct.{u2, u1} V _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_aux CochainComplex.mkAuxₓ'. -/
+#print CochainComplex.mkAux /-
 /-- Auxiliary definition for `mk`. -/
 def mkAux : ∀ n : ℕ, MkStruct V
   | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
@@ -968,7 +1357,9 @@ def mkAux : ∀ n : ℕ, MkStruct V
     let p := mk_aux n
     ⟨p.x₁, p.x₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
 #align cochain_complex.mk_aux CochainComplex.mkAux
+-/
 
+#print CochainComplex.mk /-
 /-- A inductive constructor for `ℕ`-indexed cochain complexes.
 
 You provide explicitly the first two differentials,
@@ -981,36 +1372,48 @@ def mk : CochainComplex V ℕ :=
   of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).x₀) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).d₀)
     fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).s
 #align cochain_complex.mk CochainComplex.mk
+-/
 
+#print CochainComplex.mk_X_0 /-
 @[simp]
-theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
+theorem mk_X_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
   rfl
-#align cochain_complex.mk_X_0 CochainComplex.mk_x_0
+#align cochain_complex.mk_X_0 CochainComplex.mk_X_0
+-/
 
+#print CochainComplex.mk_X_1 /-
 @[simp]
-theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
+theorem mk_X_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
   rfl
-#align cochain_complex.mk_X_1 CochainComplex.mk_x_1
+#align cochain_complex.mk_X_1 CochainComplex.mk_X_1
+-/
 
+#print CochainComplex.mk_X_2 /-
 @[simp]
-theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
+theorem mk_X_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
   rfl
-#align cochain_complex.mk_X_2 CochainComplex.mk_x_2
+#align cochain_complex.mk_X_2 CochainComplex.mk_X_2
+-/
 
+#print CochainComplex.mk_d_1_0 /-
 @[simp]
 theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 0 1 = d₀ :=
   by
   change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk_d_1_0 CochainComplex.mk_d_1_0
+-/
 
+#print CochainComplex.mk_d_2_0 /-
 @[simp]
 theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 2 = d₁ :=
   by
   change ite (2 = 1 + 1) (d₁ ≫ 𝟙 X₂) 0 = d₁
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk_d_2_0 CochainComplex.mk_d_2_0
+-/
 
+#print CochainComplex.mk' /-
 -- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
 /-- A simpler inductive constructor for `ℕ`-indexed cochain complexes.
 
@@ -1024,25 +1427,32 @@ def mk' (X₀ X₁ : V) (d : X₀ ⟶ X₁)
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align cochain_complex.mk' CochainComplex.mk'
+-/
 
 variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
 
+#print CochainComplex.mk'_X_0 /-
 @[simp]
-theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
+theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
   rfl
-#align cochain_complex.mk'_X_0 CochainComplex.mk'_x_0
+#align cochain_complex.mk'_X_0 CochainComplex.mk'_X_0
+-/
 
+#print CochainComplex.mk'_X_1 /-
 @[simp]
-theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
+theorem mk'_X_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
   rfl
-#align cochain_complex.mk'_X_1 CochainComplex.mk'_x_1
+#align cochain_complex.mk'_X_1 CochainComplex.mk'_X_1
+-/
 
+#print CochainComplex.mk'_d_1_0 /-
 @[simp]
 theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 0 1 = d₀ :=
   by
   change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
   rw [if_pos rfl, category.comp_id]
 #align cochain_complex.mk'_d_1_0 CochainComplex.mk'_d_1_0
+-/
 
 -- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
 end Mk
@@ -1058,12 +1468,7 @@ variable {V} (P Q : CochainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt
           f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'),
       Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
 
-/- warning: cochain_complex.mk_hom_aux -> CochainComplex.mkHomAux is a dubious translation:
-lean 3 declaration is
-  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) -> (forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) -> (forall (n : Nat), PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))))
-but is expected to have type
-  forall {V : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u1} V _inst_1] (P : CochainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) -> (forall (n : Nat) (p : PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) -> (forall (n : Nat), PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))))
-Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_hom_aux CochainComplex.mkHomAuxₓ'. -/
+#print CochainComplex.mkHomAux /-
 /-- An auxiliary construction for `mk_hom`.
 
 Here we build by induction a family of commutative squares,
@@ -1078,7 +1483,9 @@ def mkHomAux :
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
 #align cochain_complex.mk_hom_aux CochainComplex.mkHomAux
+-/
 
+#print CochainComplex.mkHom /-
 /-- A constructor for chain maps between `ℕ`-indexed cochain complexes,
 working by induction on commutative squares.
 
@@ -1094,17 +1501,28 @@ def mkHom : P ⟶ Q where
     rintro (rfl : n + 1 = m)
     exact (mk_hom_aux P Q zero one one_zero_comm succ n).2.2
 #align cochain_complex.mk_hom CochainComplex.mkHom
+-/
 
+#print CochainComplex.mkHom_f_0 /-
 @[simp]
 theorem mkHom_f_0 : (mkHom P Q zero one one_zero_comm succ).f 0 = zero :=
   rfl
 #align cochain_complex.mk_hom_f_0 CochainComplex.mkHom_f_0
+-/
 
+#print CochainComplex.mkHom_f_1 /-
 @[simp]
 theorem mkHom_f_1 : (mkHom P Q zero one one_zero_comm succ).f 1 = one :=
   rfl
 #align cochain_complex.mk_hom_f_1 CochainComplex.mkHom_f_1
+-/
 
+/- warning: cochain_complex.mk_hom_f_succ_succ -> CochainComplex.mkHom_f_succ_succ is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f'')) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.Hom.comm.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))))))
+but is expected to have type
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (one_zero_comm : Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) one)) (succ : forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f''))) (n : Nat), Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))) f'')) (succ n (PSigma.mk.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f'))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (PSigma.mk.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.X.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) f')) (HomologicalComplex.Hom.f.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1)))) (HomologicalComplex.Hom.comm.{0, u1, u2} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (CanonicallyOrderedCommSemiring.toOne.{0} Nat Nat.canonicallyOrderedCommSemiring)) P Q (CochainComplex.mkHom.{u1, u2} V _inst_1 _inst_2 P Q zero one one_zero_comm succ) n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat instAddNat) n (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))))))))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_hom_f_succ_succ CochainComplex.mkHom_f_succ_succₓ'. -/
 @[simp]
 theorem mkHom_f_succ_succ (n : ℕ) :
     (mkHom P Q zero one one_zero_comm succ).f (n + 2) =
Diff
@@ -58,7 +58,7 @@ This avoids a lot of dependent type theory hell!
 The composite of any two differentials `d i j ≫ d j k` must be zero.
 -/
 structure HomologicalComplex (c : ComplexShape ι) where
-  x : ι → V
+  pt : ι → V
   d : ∀ i j, X i ⟶ X j
   shape' : ∀ i j, ¬c.Rel i j → d i j = 0 := by obviously
   d_comp_d' : ∀ i j k, c.Rel i j → c.Rel j k → d i j ≫ d j k = 0 := by obviously
@@ -82,7 +82,7 @@ theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k
   · rw [C.shape i j hij, zero_comp]
 #align homological_complex.d_comp_d HomologicalComplex.d_comp_d
 
-theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.x = C₂.x)
+theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.pt = C₂.pt)
     (h_d :
       ∀ i j : ι,
         c.Rel i j → C₁.d i j ≫ eqToHom (congr_fun h_X j) = eqToHom (congr_fun h_X i) ≫ C₂.d i j) :
@@ -181,7 +181,7 @@ commuting with the differentials.
 -/
 @[ext]
 structure Hom (A B : HomologicalComplex V c) where
-  f : ∀ i, A.x i ⟶ B.x i
+  f : ∀ i, A.pt i ⟶ B.pt i
   comm' : ∀ i j, c.Rel i j → f i ≫ B.d i j = A.d i j ≫ f j := by obviously
 #align homological_complex.hom HomologicalComplex.Hom
 
@@ -219,7 +219,7 @@ instance : Category (HomologicalComplex V c)
 end
 
 @[simp]
-theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.x i) :=
+theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.pt i) :=
   rfl
 #align homological_complex.id_f HomologicalComplex.id_f
 
@@ -255,7 +255,7 @@ open ZeroObject
 /-- The zero complex -/
 noncomputable def zero [HasZeroObject V] : HomologicalComplex V c
     where
-  x i := 0
+  pt i := 0
   d i j := 0
 #align homological_complex.zero HomologicalComplex.zero
 
@@ -282,7 +282,7 @@ variable (V c)
 @[simps]
 def eval (i : ι) : HomologicalComplex V c ⥤ V
     where
-  obj C := C.x i
+  obj C := C.pt i
   map C D f := f.f i
 #align homological_complex.eval HomologicalComplex.eval
 
@@ -290,7 +290,7 @@ def eval (i : ι) : HomologicalComplex V c ⥤ V
 @[simps]
 def forget : HomologicalComplex V c ⥤ GradedObject ι V
     where
-  obj C := C.x
+  obj C := C.pt
   map _ _ f := f.f
 #align homological_complex.forget HomologicalComplex.forget
 
@@ -312,7 +312,7 @@ and so the differentials only differ by an `eq_to_hom`.
 -/
 @[simp]
 theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
-    C.d i j' ≫ eqToHom (congr_arg C.x (c.next_eq rij' rij)) = C.d i j :=
+    C.d i j' ≫ eqToHom (congr_arg C.pt (c.next_eq rij' rij)) = C.d i j :=
   by
   have P : ∀ h : j' = j, C.d i j' ≫ eq_to_hom (congr_arg C.X h) = C.d i j :=
     by
@@ -326,7 +326,7 @@ and so the differentials only differ by an `eq_to_hom`.
 -/
 @[simp]
 theorem eqToHom_comp_d {i i' j : ι} (rij : c.Rel i j) (rij' : c.Rel i' j) :
-    eqToHom (congr_arg C.x (c.prev_eq rij rij')) ≫ C.d i' j = C.d i j :=
+    eqToHom (congr_arg C.pt (c.prev_eq rij rij')) ≫ C.d i' j = C.d i j :=
   by
   have P : ∀ h : i = i', eq_to_hom (congr_arg C.X h) ≫ C.d i' j = C.d i j :=
     by
@@ -353,18 +353,18 @@ section
 
 /-- Either `C.X i`, if there is some `i` with `c.rel i j`, or `C.X j`. -/
 abbrev xPrev (j : ι) : V :=
-  C.x (c.prev j)
+  C.pt (c.prev j)
 #align homological_complex.X_prev HomologicalComplex.xPrev
 
 /-- If `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X i`. -/
-def xPrevIso {i j : ι} (r : c.Rel i j) : C.xPrev j ≅ C.x i :=
+def xPrevIso {i j : ι} (r : c.Rel i j) : C.xPrev j ≅ C.pt i :=
   eqToIso <| by rw [← c.prev_eq' r]
 #align homological_complex.X_prev_iso HomologicalComplex.xPrevIso
 
 /-- If there is no `i` so `c.rel i j`, then `C.X_prev j` is isomorphic to `C.X j`. -/
-def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.x j :=
+def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.pt j :=
   eqToIso <|
-    congr_arg C.x
+    congr_arg C.pt
       (by
         dsimp [ComplexShape.prev]
         rw [dif_neg]; push_neg; intro i hi
@@ -374,18 +374,18 @@ def xPrevIsoSelf {j : ι} (h : ¬c.Rel (c.prev j) j) : C.xPrev j ≅ C.x j :=
 
 /-- Either `C.X j`, if there is some `j` with `c.rel i j`, or `C.X i`. -/
 abbrev xNext (i : ι) : V :=
-  C.x (c.next i)
+  C.pt (c.next i)
 #align homological_complex.X_next HomologicalComplex.xNext
 
 /-- If `c.rel i j`, then `C.X_next i` is isomorphic to `C.X j`. -/
-def xNextIso {i j : ι} (r : c.Rel i j) : C.xNext i ≅ C.x j :=
+def xNextIso {i j : ι} (r : c.Rel i j) : C.xNext i ≅ C.pt j :=
   eqToIso <| by rw [← c.next_eq' r]
 #align homological_complex.X_next_iso HomologicalComplex.xNextIso
 
 /-- If there is no `j` so `c.rel i j`, then `C.X_next i` is isomorphic to `C.X i`. -/
-def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.x i :=
+def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.pt i :=
   eqToIso <|
-    congr_arg C.x
+    congr_arg C.pt
       (by
         dsimp [ComplexShape.next]
         rw [dif_neg]; rintro ⟨j, hj⟩
@@ -395,13 +395,13 @@ def xNextIsoSelf {i : ι} (h : ¬c.Rel i (c.next i)) : C.xNext i ≅ C.x i :=
 
 /-- The differential mapping into `C.X j`, or zero if there isn't one.
 -/
-abbrev dTo (j : ι) : C.xPrev j ⟶ C.x j :=
+abbrev dTo (j : ι) : C.xPrev j ⟶ C.pt j :=
   C.d (c.prev j) j
 #align homological_complex.d_to HomologicalComplex.dTo
 
 /-- The differential mapping out of `C.X i`, or zero if there isn't one.
 -/
-abbrev dFrom (i : ι) : C.x i ⟶ C.xNext i :=
+abbrev dFrom (i : ι) : C.pt i ⟶ C.xNext i :=
   C.d i (c.next i)
 #align homological_complex.d_from HomologicalComplex.dFrom
 
@@ -474,14 +474,14 @@ variable {C₁ C₂ C₃ : HomologicalComplex V c}
 
 /-- The `i`-th component of an isomorphism of chain complexes. -/
 @[simps]
-def isoApp (f : C₁ ≅ C₂) (i : ι) : C₁.x i ≅ C₂.x i :=
+def isoApp (f : C₁ ≅ C₂) (i : ι) : C₁.pt i ≅ C₂.pt i :=
   (eval V c i).mapIso f
 #align homological_complex.hom.iso_app HomologicalComplex.Hom.isoApp
 
 /-- Construct an isomorphism of chain complexes from isomorphism of the objects
 which commute with the differentials. -/
 @[simps]
-def isoOfComponents (f : ∀ i, C₁.x i ≅ C₂.x i)
+def isoOfComponents (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) : C₁ ≅ C₂
     where
   Hom :=
@@ -504,7 +504,7 @@ def isoOfComponents (f : ∀ i, C₁.x i ≅ C₂.x i)
 #align homological_complex.hom.iso_of_components HomologicalComplex.Hom.isoOfComponents
 
 @[simp]
-theorem isoOfComponents_app (f : ∀ i, C₁.x i ≅ C₂.x i)
+theorem isoOfComponents_app (f : ∀ i, C₁.pt i ≅ C₂.pt i)
     (hf : ∀ i j, c.Rel i j → (f i).Hom ≫ C₂.d i j = C₁.d i j ≫ (f j).Hom) (i : ι) :
     isoApp (isoOfComponents f hf) i = f i := by
   ext
@@ -613,7 +613,7 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 /-- Construct an `α`-indexed chain complex from a dependently-typed differential.
 -/
 def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0) : ChainComplex V α :=
-  { x
+  { pt
     d := fun i j => if h : i = j + 1 then eqToHom (by subst h) ≫ d j else 0
     shape' := fun i j w => by rw [dif_neg (Ne.symm w)]
     d_comp_d' := fun i j k hij hjk => by
@@ -625,7 +625,7 @@ def of (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫
 variable (X : α → V) (d : ∀ n, X (n + 1) ⟶ X n) (sq : ∀ n, d (n + 1) ≫ d n = 0)
 
 @[simp]
-theorem of_x (n : α) : (of X d sq).x n = X n :=
+theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align chain_complex.of_X ChainComplex.of_x
 
@@ -722,17 +722,17 @@ def mk : ChainComplex V ℕ :=
 #align chain_complex.mk ChainComplex.mk
 
 @[simp]
-theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 0 = X₀ :=
+theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
   rfl
 #align chain_complex.mk_X_0 ChainComplex.mk_x_0
 
 @[simp]
-theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 1 = X₁ :=
+theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
   rfl
 #align chain_complex.mk_X_1 ChainComplex.mk_x_1
 
 @[simp]
-theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 2 = X₂ :=
+theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
   rfl
 #align chain_complex.mk_X_2 ChainComplex.mk_x_2
 
@@ -767,12 +767,12 @@ def mk' (X₀ X₁ : V) (d : X₁ ⟶ X₀)
 variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
 
 @[simp]
-theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').x 0 = X₀ :=
+theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
   rfl
 #align chain_complex.mk'_X_0 ChainComplex.mk'_x_0
 
 @[simp]
-theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').x 1 = X₁ :=
+theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
   rfl
 #align chain_complex.mk'_X_1 ChainComplex.mk'_x_1
 
@@ -788,14 +788,14 @@ end Mk
 
 section MkHom
 
-variable {V} (P Q : ChainComplex V ℕ) (zero : P.x 0 ⟶ Q.x 0) (one : P.x 1 ⟶ Q.x 1)
+variable {V} (P Q : ChainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt 1 ⟶ Q.pt 1)
   (one_zero_comm : one ≫ Q.d 1 0 = P.d 1 0 ≫ zero)
   (succ :
     ∀ (n : ℕ)
       (p :
-        Σ'(f : P.x n ⟶ Q.x n)(f' : P.x (n + 1) ⟶ Q.x (n + 1)),
+        Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
           f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f),
-      Σ'f'' : P.x (n + 2) ⟶ Q.x (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
+      Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
 
 /- warning: chain_complex.mk_hom_aux -> ChainComplex.mkHomAux is a dubious translation:
 lean 3 declaration is
@@ -812,7 +812,8 @@ in `mk_hom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.x n ⟶ Q.x n)(f' : P.x (n + 1) ⟶ Q.x (n + 1)), f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f
+      Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+        f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
 #align chain_complex.mk_hom_aux ChainComplex.mkHomAux
@@ -869,7 +870,7 @@ variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α
 -/
 def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0) :
     CochainComplex V α :=
-  { x
+  { pt
     d := fun i j => if h : i + 1 = j then d _ ≫ eqToHom (by subst h) else 0
     shape' := fun i j w => by
       rw [dif_neg]
@@ -884,7 +885,7 @@ def of (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n +
 variable (X : α → V) (d : ∀ n, X n ⟶ X (n + 1)) (sq : ∀ n, d n ≫ d (n + 1) = 0)
 
 @[simp]
-theorem of_x (n : α) : (of X d sq).x n = X n :=
+theorem of_x (n : α) : (of X d sq).pt n = X n :=
   rfl
 #align cochain_complex.of_X CochainComplex.of_x
 
@@ -982,17 +983,17 @@ def mk : CochainComplex V ℕ :=
 #align cochain_complex.mk CochainComplex.mk
 
 @[simp]
-theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 0 = X₀ :=
+theorem mk_x_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 0 = X₀ :=
   rfl
 #align cochain_complex.mk_X_0 CochainComplex.mk_x_0
 
 @[simp]
-theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 1 = X₁ :=
+theorem mk_x_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 1 = X₁ :=
   rfl
 #align cochain_complex.mk_X_1 CochainComplex.mk_x_1
 
 @[simp]
-theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).x 2 = X₂ :=
+theorem mk_x_2 : (mk X₀ X₁ X₂ d₀ d₁ s succ).pt 2 = X₂ :=
   rfl
 #align cochain_complex.mk_X_2 CochainComplex.mk_x_2
 
@@ -1027,12 +1028,12 @@ def mk' (X₀ X₁ : V) (d : X₀ ⟶ X₁)
 variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
 
 @[simp]
-theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').x 0 = X₀ :=
+theorem mk'_x_0 : (mk' X₀ X₁ d₀ succ').pt 0 = X₀ :=
   rfl
 #align cochain_complex.mk'_X_0 CochainComplex.mk'_x_0
 
 @[simp]
-theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').x 1 = X₁ :=
+theorem mk'_x_1 : (mk' X₀ X₁ d₀ succ').pt 1 = X₁ :=
   rfl
 #align cochain_complex.mk'_X_1 CochainComplex.mk'_x_1
 
@@ -1048,14 +1049,14 @@ end Mk
 
 section MkHom
 
-variable {V} (P Q : CochainComplex V ℕ) (zero : P.x 0 ⟶ Q.x 0) (one : P.x 1 ⟶ Q.x 1)
+variable {V} (P Q : CochainComplex V ℕ) (zero : P.pt 0 ⟶ Q.pt 0) (one : P.pt 1 ⟶ Q.pt 1)
   (one_zero_comm : zero ≫ Q.d 0 1 = P.d 0 1 ≫ one)
   (succ :
     ∀ (n : ℕ)
       (p :
-        Σ'(f : P.x n ⟶ Q.x n)(f' : P.x (n + 1) ⟶ Q.x (n + 1)),
+        Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
           f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'),
-      Σ'f'' : P.x (n + 2) ⟶ Q.x (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
+      Σ'f'' : P.pt (n + 2) ⟶ Q.pt (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
 
 /- warning: cochain_complex.mk_hom_aux -> CochainComplex.mkHomAux is a dubious translation:
 lean 3 declaration is
@@ -1072,7 +1073,8 @@ in `mk_hom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.x n ⟶ Q.x n)(f' : P.x (n + 1) ⟶ Q.x (n + 1)), f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'
+      Σ'(f : P.pt n ⟶ Q.pt n)(f' : P.pt (n + 1) ⟶ Q.pt (n + 1)),
+        f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mk_hom_aux n).2.1, (succ n (mk_hom_aux n)).1, (succ n (mk_hom_aux n)).2⟩
 #align cochain_complex.mk_hom_aux CochainComplex.mkHomAux
Diff
@@ -1057,6 +1057,12 @@ variable {V} (P Q : CochainComplex V ℕ) (zero : P.x 0 ⟶ Q.x 0) (one : P.x 1
           f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'),
       Σ'f'' : P.x (n + 2) ⟶ Q.x (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
 
+/- warning: cochain_complex.mk_hom_aux -> CochainComplex.mkHomAux is a dubious translation:
+lean 3 declaration is
+  forall {V : Type.{u2}} [_inst_1 : CategoryTheory.Category.{u1, u2} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u1, u2} V _inst_1] (P : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u1, u2, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) -> (forall (n : Nat) (p : PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) -> (forall (n : Nat), PSigma.{succ u1, succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u1, 0} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u1} (Quiver.Hom.{succ u1, u2} V (CategoryTheory.CategoryStruct.toQuiver.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1)) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u1, u2} V (CategoryTheory.Category.toCategoryStruct.{u1, u2} V _inst_1) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u1, u2, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))))
+but is expected to have type
+  forall {V : Type.{u1}} [_inst_1 : CategoryTheory.Category.{u2, u1} V] [_inst_2 : CategoryTheory.Limits.HasZeroMorphisms.{u2, u1} V _inst_1] (P : CochainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (Q : CochainComplex.{u2, u1, 0} V _inst_1 _inst_2 Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) (zero : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))))) (one : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))), (Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) zero (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) one)) -> (forall (n : Nat) (p : PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')))), PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (fun (f'' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (PSigma.fst.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (PSigma.fst.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f')) (PSigma.snd.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))) p)) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))) (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 2 (OfNat.mk.{0} Nat 2 (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne)))))) f''))) -> (forall (n : Nat), PSigma.{succ u2, succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) (fun (f : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n)) => PSigma.{succ u2, 0} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (fun (f' : Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) => Eq.{succ u2} (Quiver.Hom.{succ u2, u1} V (CategoryTheory.CategoryStruct.toQuiver.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1)) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne)))))) (CategoryTheory.CategoryStruct.comp.{u2, u1} V (CategoryTheory.Category.toCategoryStruct.{u2, u1} V _inst_1) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.x.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) Q (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) (HomologicalComplex.d.{u2, u1, 0} Nat V _inst_1 _inst_2 (ComplexShape.up.{0} Nat (AddRightCancelMonoid.toAddRightCancelSemigroup.{0} Nat (AddCancelMonoid.toAddRightCancelMonoid.{0} Nat (AddCancelCommMonoid.toAddCancelMonoid.{0} Nat (OrderedCancelAddCommMonoid.toCancelAddCommMonoid.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) Nat.hasOne) P n (HAdd.hAdd.{0, 0, 0} Nat Nat Nat (instHAdd.{0} Nat Nat.hasAdd) n (OfNat.ofNat.{0} Nat 1 (OfNat.mk.{0} Nat 1 (One.one.{0} Nat Nat.hasOne))))) f'))))
+Case conversion may be inaccurate. Consider using '#align cochain_complex.mk_hom_aux CochainComplex.mkHomAuxₓ'. -/
 /-- An auxiliary construction for `mk_hom`.
 
 Here we build by induction a family of commutative squares,

Changes in mathlib4

mathlib3
mathlib4
chore(CategoryTheory): move Full, Faithful, EssSurj, IsEquivalence and ReflectsIsomorphisms to the Functor namespace (#11985)

These notions on functors are now Functor.Full, Functor.Faithful, Functor.EssSurj, Functor.IsEquivalence, Functor.ReflectsIsomorphisms. Deprecated aliases are introduced for the previous names.

Diff
@@ -350,7 +350,7 @@ def forget : HomologicalComplex V c ⥤ GradedObject ι V where
   map f := f.f
 #align homological_complex.forget HomologicalComplex.forget
 
-instance : Faithful (forget V c) where
+instance : (forget V c).Faithful where
   map_injective h := by
     ext i
     exact congr_fun h i
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -42,7 +42,6 @@ universe v u
 open CategoryTheory CategoryTheory.Category CategoryTheory.Limits
 
 variable {ι : Type*}
-
 variable (V : Type u) [Category.{v} V] [HasZeroMorphisms V]
 
 /-- A `HomologicalComplex V c` with a "shape" controlled by `c : ComplexShape ι`
@@ -715,7 +714,6 @@ end Of
 section OfHom
 
 variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
-
 variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n + 1) ≫ d_X n = 0) (Y : α → V)
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
 
@@ -964,7 +962,6 @@ end Of
 section OfHom
 
 variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
-
 variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n ≫ d_X (n + 1) = 0) (Y : α → V)
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
 
@@ -989,7 +986,6 @@ end OfHom
 section Mk
 
 variable {V}
-
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
   (succ : ∀ (S : ShortComplex V), Σ' (X₄ : V) (d₂ : S.X₃ ⟶ X₄), S.g ≫ d₂ = 0)
 
perf(Abelian.InjectiveResolution): refactor CochainComplex.mkAux (#11349)

Similar to the changes for ChainComplex.mkAux we remove the ad-hoc MkStruct and replace with it ShortComplex.

Diff
@@ -988,37 +988,15 @@ end OfHom
 
 section Mk
 
--- porting note (#10927): removed @[nolint has_nonempty_instance]
-/-- Auxiliary structure for setting up the recursion in `mk`.
-This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
-results in `mkAux` taking much longer (well over the `-T100000` limit) to elaborate.
--/
-structure MkStruct where
-  (X₀ X₁ X₂ : V)
-  d₀ : X₀ ⟶ X₁
-  d₁ : X₁ ⟶ X₂
-  s : d₀ ≫ d₁ = 0
-#align cochain_complex.mk_struct CochainComplex.MkStruct
-
 variable {V}
 
-/-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) :
-    Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
-  ⟨t.X₀, t.X₁, t.X₂, t.d₀, t.d₁, t.s⟩
-#align cochain_complex.mk_struct.flat CochainComplex.MkStruct.flat
-
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
-  (succ :
-    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
-      Σ' (X₃ : V) (d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
+  (succ : ∀ (S : ShortComplex V), Σ' (X₄ : V) (d₂ : S.X₃ ⟶ X₄), S.g ≫ d₂ = 0)
 
 /-- Auxiliary definition for `mk`. -/
-def mkAux : ℕ → MkStruct V
-  | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
-  | n + 1 =>
-    let p := mkAux n
-    ⟨p.X₁, p.X₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
+def mkAux : ℕ → ShortComplex V
+  | 0 => ShortComplex.mk _ _ s
+  | n + 1 => ShortComplex.mk _ _ (succ (mkAux n)).2.2
 #align cochain_complex.mk_aux CochainComplex.mkAux
 
 /-- An inductive constructor for `ℕ`-indexed cochain complexes.
@@ -1030,8 +1008,8 @@ and returns the next object, its differential, and the fact it composes appropri
 See also `mk'`, which only sees the previous differential in the inductive step.
 -/
 def mk : CochainComplex V ℕ :=
-  of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).X₀) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).d₀)
-    fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).s
+  of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).X₁) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).f)
+    fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).zero
 #align cochain_complex.mk CochainComplex.mk
 
 @[simp]
@@ -1072,13 +1050,13 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₀ ⟶ X₁)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
+    -- (succ' : ∀  : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
+    (succ' : ∀ {X₀ X₁ : V} (f : X₀ ⟶ X₁), Σ' (X₂ : V) (d : X₁ ⟶ X₂), f ≫ d = 0) :
     CochainComplex V ℕ :=
-  mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
-    succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
+  mk _ _ _ _ _ (succ' d).2.2 (fun S => succ' S.g)
 #align cochain_complex.mk' CochainComplex.mk'
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
+variable (succ' : ∀ {X₀ X₁ : V} (f : X₀ ⟶ X₁), Σ' (X₂ : V) (d : X₁ ⟶ X₂), f ≫ d = 0)
 
 @[simp]
 theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').X 0 = X₀ :=
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -264,7 +264,7 @@ instance : Category (HomologicalComplex V c) where
 
 end
 
--- porting note: added because `Hom.ext` is not triggered automatically
+-- Porting note: added because `Hom.ext` is not triggered automatically
 @[ext]
 lemma hom_ext {C D : HomologicalComplex V c} (f g : C ⟶ D)
     (h : ∀ i, f.f i = g.f i) : f = g := by
@@ -375,7 +375,7 @@ lemma XIsoOfEq_hom_naturality {K L : HomologicalComplex V c} (φ : K ⟶ L) {n n
 lemma XIsoOfEq_inv_naturality {K L : HomologicalComplex V c} (φ : K ⟶ L) {n n' : ι} (h : n = n') :
     φ.f n' ≫ (L.XIsoOfEq h).inv = (K.XIsoOfEq h).inv ≫ φ.f n := by subst h; simp
 
--- porting note: removed @[simp] as the linter complained
+-- Porting note: removed @[simp] as the linter complained
 /-- If `C.d i j` and `C.d i j'` are both allowed, then we must have `j = j'`,
 and so the differentials only differ by an `eqToHom`.
 -/
@@ -385,7 +385,7 @@ theorem d_comp_eqToHom {i j j' : ι} (rij : c.Rel i j) (rij' : c.Rel i j') :
   simp only [eqToHom_refl, comp_id]
 #align homological_complex.d_comp_eq_to_hom HomologicalComplex.d_comp_eqToHom
 
--- porting note: removed @[simp] as the linter complained
+-- Porting note: removed @[simp] as the linter complained
 /-- If `C.d i j` and `C.d i' j` are both allowed, then we must have `i = i'`,
 and so the differentials only differ by an `eqToHom`.
 -/
chore: classify removed @[nolint has_nonempty_instance] porting notes (#10929)

Classifies by adding issue number (#10927) to porting notes claiming removed @[nolint has_nonempty_instance].

Diff
@@ -988,7 +988,7 @@ end OfHom
 
 section Mk
 
--- porting note: removed @[nolint has_nonempty_instance]
+-- porting note (#10927): removed @[nolint has_nonempty_instance]
 /-- Auxiliary structure for setting up the recursion in `mk`.
 This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
 results in `mkAux` taking much longer (well over the `-T100000` limit) to elaborate.
feat(Algebra/Homology): the total complex functor (#10711)

In this PR, the construction of the total complex of a bicomplex is extended to a functor HomologicalComplex₂.totalFunctor : HomologicalComplex₂ C c₁ c₂ ⥤ HomologicalComplex C c₁₂.

Diff
@@ -351,6 +351,11 @@ def forget : HomologicalComplex V c ⥤ GradedObject ι V where
   map f := f.f
 #align homological_complex.forget HomologicalComplex.forget
 
+instance : Faithful (forget V c) where
+  map_injective h := by
+    ext i
+    exact congr_fun h i
+
 /-- Forgetting the differentials than picking out the `i`-th object is the same as
 just picking out the `i`-th object. -/
 @[simps!]
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -599,7 +599,7 @@ theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
   simp only [xNextIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp]
 #align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eq
 
-@[reassoc, elementwise] -- @[simp] -- Porting note: simp can prove this
+@[reassoc, elementwise] -- @[simp] -- Porting note (#10618): simp can prove this
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
@@ -607,7 +607,7 @@ theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.d
 attribute [simp 1100] comm_from_assoc
 attribute [simp] comm_from_apply
 
-@[reassoc, elementwise] -- @[simp] -- Porting note: simp can prove this
+@[reassoc, elementwise] -- @[simp] -- Porting note (#10618): simp can prove this
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
 #align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_to
perf (Homology.ProjectiveResolution): remove MkStruct, re-jigger proof, and suppress compilation (#9555)

Currently CategoryTheory.Abelian.ProjectiveResolution requires more than double the next largest file in terms of CPU instructions. This reduces the load by replacing ad-hoc MkStruct with ShortComplex and pushing around the existing proof. Follow-up clean-up should be done.

Diff
@@ -6,6 +6,7 @@ Authors: Johan Commelin, Scott Morrison
 import Mathlib.Algebra.Homology.ComplexShape
 import Mathlib.CategoryTheory.Subobject.Limits
 import Mathlib.CategoryTheory.GradedObject
+import Mathlib.Algebra.Homology.ShortComplex.Basic
 
 #align_import algebra.homology.homological_complex from "leanprover-community/mathlib"@"88bca0ce5d22ebfd9e73e682e51d60ea13b48347"
 
@@ -732,37 +733,16 @@ end OfHom
 
 section Mk
 
--- porting note: removed @[nolint has_nonempty_instance]
-/-- Auxiliary structure for setting up the recursion in `mk`.
-This is purely an implementation detail: for some reason just using the dependent 6-tuple directly
-results in `mk_aux` taking much longer (well over the `-T100000` limit) to elaborate.
--/
-structure MkStruct where
-  (X₀ X₁ X₂ : V)
-  d₀ : X₁ ⟶ X₀
-  d₁ : X₂ ⟶ X₁
-  s : d₁ ≫ d₀ = 0
-#align chain_complex.mk_struct ChainComplex.MkStruct
-
 variable {V}
 
-/-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) :
-    Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
-  ⟨t.X₀, t.X₁, t.X₂, t.d₀, t.d₁, t.s⟩
-#align chain_complex.mk_struct.flat ChainComplex.MkStruct.flat
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s : d₁ ≫ d₀ = 0)
-  (succ :
-    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
-      Σ' (X₃ : V) (d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
+  (succ : ∀ (S : ShortComplex V), Σ' (X₃ : V) (d₂ : X₃ ⟶ S.X₁), d₂ ≫ S.f = 0)
 
 /-- Auxiliary definition for `mk`. -/
-def mkAux : ℕ → MkStruct V
-  | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
-  | n + 1 =>
-    let p := mkAux n
-    ⟨p.X₁, p.X₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
+def mkAux : ℕ → ShortComplex V
+  | 0 => ShortComplex.mk _ _ s
+  | n + 1 => ShortComplex.mk _ _ (succ (mkAux n)).2.2
 #align chain_complex.mk_aux ChainComplex.mkAux
 
 /-- An inductive constructor for `ℕ`-indexed chain complexes.
@@ -774,8 +754,8 @@ and returns the next object, its differential, and the fact it composes appropri
 See also `mk'`, which only sees the previous differential in the inductive step.
 -/
 def mk : ChainComplex V ℕ :=
-  of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).X₀) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).d₀)
-    fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).s
+  of (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).X₃) (fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).g)
+    fun n => (mkAux X₀ X₁ X₂ d₀ d₁ s succ n).zero
 #align chain_complex.mk ChainComplex.mk
 
 @[simp]
@@ -816,13 +796,12 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₁ ⟶ X₀)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0) :
+    (succ' : ∀ {X₀ X₁ : V} (f : X₁ ⟶ X₀), Σ' (X₂ : V) (d : X₂ ⟶ X₁), d ≫ f = 0) :
     ChainComplex V ℕ :=
-  mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
-    succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
+  mk _ _ _ _ _ (succ' d).2.2 (fun S => succ' S.f)
 #align chain_complex.mk' ChainComplex.mk'
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
+variable (succ' : ∀ {X₀ X₁ : V} (f : X₁ ⟶ X₀), Σ' (X₂ : V) (d : X₂ ⟶ X₁), d ≫ f = 0)
 
 @[simp]
 theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').X 0 = X₀ :=
chore(*): use α → β instead of ∀ _ : α, β (#9529)
Diff
@@ -758,7 +758,7 @@ variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s :
       Σ' (X₃ : V) (d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
 
 /-- Auxiliary definition for `mk`. -/
-def mkAux : ∀ _ : ℕ, MkStruct V
+def mkAux : ℕ → MkStruct V
   | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
   | n + 1 =>
     let p := mkAux n
@@ -1030,7 +1030,7 @@ variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s :
       Σ' (X₃ : V) (d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
 
 /-- Auxiliary definition for `mk`. -/
-def mkAux : ∀ _ : ℕ, MkStruct V
+def mkAux : ℕ → MkStruct V
   | 0 => ⟨X₀, X₁, X₂, d₀, d₁, s⟩
   | n + 1 =>
     let p := mkAux n
refactor(Algebra/Homology): the category of bicomplexes (#9333)

This PR introduces the abbreviation abbrev HomologicalComplex₂ := HomologicalComplex (HomologicalComplex C c₂) c₁ for bicomplexes. The content of the file Algebra.Homology.Flip is also moved to the new file Algebra.Homology.HomologicalBicomplex.

Diff
@@ -276,7 +276,7 @@ theorem id_f (C : HomologicalComplex V c) (i : ι) : Hom.f (𝟙 C) i = 𝟙 (C.
   rfl
 #align homological_complex.id_f HomologicalComplex.id_f
 
-@[simp]
+@[simp, reassoc]
 theorem comp_f {C₁ C₂ C₃ : HomologicalComplex V c} (f : C₁ ⟶ C₂) (g : C₂ ⟶ C₃) (i : ι) :
     (f ≫ g).f i = f.f i ≫ g.f i :=
   rfl
refactor: introduce the new homology API for homological complex and rename the old one (#7954)

This PR renames definitions of the current homology API (adding a ' to homology, cycles, QuasiIso) so as to create space for the development of the new homology API of homological complexes: this PR also contains the new definition of HomologicalComplex.homology which involves the homology theory of short complexes.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -803,10 +803,10 @@ theorem mk_d_1_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 1 0 = d₀ := by
 #align chain_complex.mk_d_1_0 ChainComplex.mk_d_1_0
 
 @[simp]
-theorem mk_d_2_0 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ := by
+theorem mk_d_2_1 : (mk X₀ X₁ X₂ d₀ d₁ s succ).d 2 1 = d₁ := by
   change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁
   rw [if_pos rfl, Category.id_comp]
-#align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_0
+#align chain_complex.mk_d_2_0 ChainComplex.mk_d_2_1
 
 -- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
 /-- A simpler inductive constructor for `ℕ`-indexed chain complexes.
chore: exactly 4 spaces in subsequent lines for def (#7321)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -93,8 +93,8 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.X = C₂.X)
 #align homological_complex.ext HomologicalComplex.ext
 
 /-- The obvious isomorphism `K.X p ≅ K.X q` when `p = q`. -/
-def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) :
-  K.X p ≅ K.X q := eqToIso (by rw [h])
+def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) : K.X p ≅ K.X q :=
+  eqToIso (by rw [h])
 
 @[simp]
 lemma XIsoOfEq_rfl (K : HomologicalComplex V c) (p : ι) :
chore: only four spaces for subsequent lines (#7286)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -98,7 +98,7 @@ def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) :
 
 @[simp]
 lemma XIsoOfEq_rfl (K : HomologicalComplex V c) (p : ι) :
-  K.XIsoOfEq (rfl : p = p) = Iso.refl _ := rfl
+    K.XIsoOfEq (rfl : p = p) = Iso.refl _ := rfl
 
 @[reassoc (attr := simp)]
 lemma XIsoOfEq_hom_comp_XIsoOfEq_hom (K : HomologicalComplex V c) {p₁ p₂ p₃ : ι}
style: fix wrapping of where (#7149)
Diff
@@ -248,8 +248,8 @@ def id (A : HomologicalComplex V c) : Hom A A where f _ := 𝟙 _
 #align homological_complex.id HomologicalComplex.id
 
 /-- Composition of chain maps. -/
-def comp (A B C : HomologicalComplex V c) (φ : Hom A B) (ψ : Hom B C) : Hom A C
-    where f i := φ.f i ≫ ψ.f i
+def comp (A B C : HomologicalComplex V c) (φ : Hom A B) (ψ : Hom B C) : Hom A C where
+  f i := φ.f i ≫ ψ.f i
 #align homological_complex.comp HomologicalComplex.comp
 
 section
feat: the shift on the category of cochain complexes (#6626)

This PR constructs the shift on the category of cochain complexes.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com>

Diff
@@ -361,6 +361,14 @@ end
 
 noncomputable section
 
+@[reassoc]
+lemma XIsoOfEq_hom_naturality {K L : HomologicalComplex V c} (φ : K ⟶ L) {n n' : ι} (h : n = n') :
+    φ.f n ≫ (L.XIsoOfEq h).hom = (K.XIsoOfEq h).hom ≫ φ.f n' := by subst h; simp
+
+@[reassoc]
+lemma XIsoOfEq_inv_naturality {K L : HomologicalComplex V c} (φ : K ⟶ L) {n n' : ι} (h : n = n') :
+    φ.f n' ≫ (L.XIsoOfEq h).inv = (K.XIsoOfEq h).inv ≫ φ.f n := by subst h; simp
+
 -- porting note: removed @[simp] as the linter complained
 /-- If `C.d i j` and `C.d i j'` are both allowed, then we must have `j = j'`,
 and so the differentials only differ by an `eqToHom`.
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -40,7 +40,7 @@ universe v u
 
 open CategoryTheory CategoryTheory.Category CategoryTheory.Limits
 
-variable {ι : Type _}
+variable {ι : Type*}
 
 variable (V : Type u) [Category.{v} V] [HasZeroMorphisms V]
 
@@ -149,27 +149,27 @@ end HomologicalComplex
 /-- An `α`-indexed chain complex is a `HomologicalComplex`
 in which `d i j ≠ 0` only if `j + 1 = i`.
 -/
-abbrev ChainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type _ :=
+abbrev ChainComplex (α : Type*) [AddRightCancelSemigroup α] [One α] : Type _ :=
   HomologicalComplex V (ComplexShape.down α)
 #align chain_complex ChainComplex
 
 /-- An `α`-indexed cochain complex is a `HomologicalComplex`
 in which `d i j ≠ 0` only if `i + 1 = j`.
 -/
-abbrev CochainComplex (α : Type _) [AddRightCancelSemigroup α] [One α] : Type _ :=
+abbrev CochainComplex (α : Type*) [AddRightCancelSemigroup α] [One α] : Type _ :=
   HomologicalComplex V (ComplexShape.up α)
 #align cochain_complex CochainComplex
 
 namespace ChainComplex
 
 @[simp]
-theorem prev (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
+theorem prev (α : Type*) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.down α).prev i = i + 1 :=
   (ComplexShape.down α).prev_eq' rfl
 #align chain_complex.prev ChainComplex.prev
 
 @[simp]
-theorem next (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.down α).next i = i - 1 :=
+theorem next (α : Type*) [AddGroup α] [One α] (i : α) : (ComplexShape.down α).next i = i - 1 :=
   (ComplexShape.down α).next_eq' <| sub_add_cancel _ _
 #align chain_complex.next ChainComplex.next
 
@@ -192,12 +192,12 @@ end ChainComplex
 namespace CochainComplex
 
 @[simp]
-theorem prev (α : Type _) [AddGroup α] [One α] (i : α) : (ComplexShape.up α).prev i = i - 1 :=
+theorem prev (α : Type*) [AddGroup α] [One α] (i : α) : (ComplexShape.up α).prev i = i - 1 :=
   (ComplexShape.up α).prev_eq' <| sub_add_cancel _ _
 #align cochain_complex.prev CochainComplex.prev
 
 @[simp]
-theorem next (α : Type _) [AddRightCancelSemigroup α] [One α] (i : α) :
+theorem next (α : Type*) [AddRightCancelSemigroup α] [One α] (i : α) :
     (ComplexShape.up α).next i = i + 1 :=
   (ComplexShape.up α).next_eq' rfl
 #align cochain_complex.next CochainComplex.next
@@ -661,7 +661,7 @@ namespace ChainComplex
 
 section Of
 
-variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
+variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
 /-- Construct an `α`-indexed chain complex from a dependently-typed differential.
 -/
@@ -700,7 +700,7 @@ end Of
 
 section OfHom
 
-variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
+variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
 variable (X : α → V) (d_X : ∀ n, X (n + 1) ⟶ X n) (sq_X : ∀ n, d_X (n + 1) ≫ d_X n = 0) (Y : α → V)
   (d_Y : ∀ n, Y (n + 1) ⟶ Y n) (sq_Y : ∀ n, d_Y (n + 1) ≫ d_Y n = 0)
@@ -928,7 +928,7 @@ namespace CochainComplex
 
 section Of
 
-variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
+variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
 /-- Construct an `α`-indexed cochain complex from a dependently-typed differential.
 -/
@@ -971,7 +971,7 @@ end Of
 
 section OfHom
 
-variable {V} {α : Type _} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
+variable {V} {α : Type*} [AddRightCancelSemigroup α] [One α] [DecidableEq α]
 
 variable (X : α → V) (d_X : ∀ n, X n ⟶ X (n + 1)) (sq_X : ∀ n, d_X n ≫ d_X (n + 1) = 0) (Y : α → V)
   (d_Y : ∀ n, Y n ⟶ Y (n + 1)) (sq_Y : ∀ n, d_Y n ≫ d_Y (n + 1) = 0)
feat: the short complexes attached to homological complexes (#6039)

If K is an homological complex and i some degree, this PR defines the short complex K.sc i which is `K.X (c.prev i) ⟶ K.X i ⟶ K.X (c.next i)``.

Co-authored-by: Joël Riou <37772949+joelriou@users.noreply.github.com> Co-authored-by: Markus Himmel <markus@himmel-villmar.de>

Diff
@@ -92,6 +92,58 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.X = C₂.X)
   · rw [s₁ i j hij, s₂ i j hij]
 #align homological_complex.ext HomologicalComplex.ext
 
+/-- The obvious isomorphism `K.X p ≅ K.X q` when `p = q`. -/
+def XIsoOfEq (K : HomologicalComplex V c) {p q : ι} (h : p = q) :
+  K.X p ≅ K.X q := eqToIso (by rw [h])
+
+@[simp]
+lemma XIsoOfEq_rfl (K : HomologicalComplex V c) (p : ι) :
+  K.XIsoOfEq (rfl : p = p) = Iso.refl _ := rfl
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_hom_comp_XIsoOfEq_hom (K : HomologicalComplex V c) {p₁ p₂ p₃ : ι}
+    (h₁₂ : p₁ = p₂) (h₂₃ : p₂ = p₃) :
+    (K.XIsoOfEq h₁₂).hom ≫ (K.XIsoOfEq h₂₃).hom = (K.XIsoOfEq (h₁₂.trans h₂₃)).hom := by
+  dsimp [XIsoOfEq]
+  simp only [eqToHom_trans]
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_hom_comp_XIsoOfEq_inv (K : HomologicalComplex V c) {p₁ p₂ p₃ : ι}
+    (h₁₂ : p₁ = p₂) (h₃₂ : p₃ = p₂) :
+    (K.XIsoOfEq h₁₂).hom ≫ (K.XIsoOfEq h₃₂).inv = (K.XIsoOfEq (h₁₂.trans h₃₂.symm)).hom := by
+  dsimp [XIsoOfEq]
+  simp only [eqToHom_trans]
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_inv_comp_XIsoOfEq_hom (K : HomologicalComplex V c) {p₁ p₂ p₃ : ι}
+    (h₂₁ : p₂ = p₁) (h₂₃ : p₂ = p₃) :
+    (K.XIsoOfEq h₂₁).inv ≫ (K.XIsoOfEq h₂₃).hom = (K.XIsoOfEq (h₂₁.symm.trans h₂₃)).hom := by
+  dsimp [XIsoOfEq]
+  simp only [eqToHom_trans]
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_inv_comp_XIsoOfEq_inv (K : HomologicalComplex V c) {p₁ p₂ p₃ : ι}
+    (h₂₁ : p₂ = p₁) (h₃₂ : p₃ = p₂) :
+    (K.XIsoOfEq h₂₁).inv ≫ (K.XIsoOfEq h₃₂).inv = (K.XIsoOfEq (h₃₂.trans h₂₁).symm).hom := by
+  dsimp [XIsoOfEq]
+  simp only [eqToHom_trans]
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_hom_comp_d (K : HomologicalComplex V c) {p₁ p₂ : ι} (h : p₁ = p₂) (p₃ : ι) :
+    (K.XIsoOfEq h).hom ≫ K.d p₂ p₃ = K.d p₁ p₃ := by subst h; simp
+
+@[reassoc (attr := simp)]
+lemma XIsoOfEq_inv_comp_d (K : HomologicalComplex V c) {p₂ p₁ : ι} (h : p₂ = p₁) (p₃ : ι) :
+    (K.XIsoOfEq h).inv ≫ K.d p₂ p₃ = K.d p₁ p₃ := by subst h; simp
+
+@[reassoc (attr := simp)]
+lemma d_comp_XIsoOfEq_hom (K : HomologicalComplex V c) {p₂ p₃ : ι} (h : p₂ = p₃) (p₁ : ι) :
+    K.d p₁ p₂ ≫ (K.XIsoOfEq h).hom = K.d p₁ p₃ := by subst h; simp
+
+@[reassoc (attr := simp)]
+lemma d_comp_XIsoOfEq_inv (K : HomologicalComplex V c) {p₂ p₃ : ι} (h : p₃ = p₂) (p₁ : ι) :
+    K.d p₁ p₂ ≫ (K.XIsoOfEq h).inv = K.d p₁ p₃ := by subst h; simp
+
 end HomologicalComplex
 
 /-- An `α`-indexed chain complex is a `HomologicalComplex`
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Scott Morrison. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johan Commelin, Scott Morrison
-
-! This file was ported from Lean 3 source module algebra.homology.homological_complex
-! leanprover-community/mathlib commit 88bca0ce5d22ebfd9e73e682e51d60ea13b48347
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Homology.ComplexShape
 import Mathlib.CategoryTheory.Subobject.Limits
 import Mathlib.CategoryTheory.GradedObject
 
+#align_import algebra.homology.homological_complex from "leanprover-community/mathlib"@"88bca0ce5d22ebfd9e73e682e51d60ea13b48347"
+
 /-!
 # Homological complexes.
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -246,7 +246,7 @@ theorem hom_f_injective {C₁ C₂ : HomologicalComplex V c} :
     Function.Injective fun f : Hom C₁ C₂ => f.f := by aesop_cat
 #align homological_complex.hom_f_injective HomologicalComplex.hom_f_injective
 
-instance (X Y : HomologicalComplex V c) : Zero (X ⟶  Y) :=
+instance (X Y : HomologicalComplex V c) : Zero (X ⟶ Y) :=
   ⟨{ f := fun i => 0}⟩
 
 @[simp]
chore: bump to nightly-2023-07-01 (#5409)

Open in Gitpod

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -541,16 +541,22 @@ theorem next_eq (f : Hom C₁ C₂) {i j : ι} (w : c.Rel i j) :
   simp only [xNextIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp]
 #align homological_complex.hom.next_eq HomologicalComplex.Hom.next_eq
 
-@[reassoc (attr := simp 1100), elementwise (attr := simp)]
+@[reassoc, elementwise] -- @[simp] -- Porting note: simp can prove this
 theorem comm_from (f : Hom C₁ C₂) (i : ι) : f.f i ≫ C₂.dFrom i = C₁.dFrom i ≫ f.next i :=
   f.comm _ _
 #align homological_complex.hom.comm_from HomologicalComplex.Hom.comm_from
 
-@[reassoc (attr := simp 1100), elementwise (attr := simp)]
+attribute [simp 1100] comm_from_assoc
+attribute [simp] comm_from_apply
+
+@[reassoc, elementwise] -- @[simp] -- Porting note: simp can prove this
 theorem comm_to (f : Hom C₁ C₂) (j : ι) : f.prev j ≫ C₂.dTo j = C₁.dTo j ≫ f.f j :=
   f.comm _ _
 #align homological_complex.hom.comm_to HomologicalComplex.Hom.comm_to
 
+attribute [simp 1100] comm_to_assoc
+attribute [simp] comm_to_apply
+
 /-- A morphism of chain complexes
 induces a morphism of arrows of the differentials out of each object.
 -/
@@ -863,7 +869,6 @@ theorem mkHom_f_succ_succ (n : ℕ) :
             (mkHom P Q zero one one_zero_comm succ).f (n + 1),
             (mkHom P Q zero one one_zero_comm succ).comm (n + 1) n⟩).1 := by
   dsimp [mkHom, mkHomAux]
-  induction n <;> congr
 #align chain_complex.mk_hom_f_succ_succ ChainComplex.mkHom_f_succ_succ
 
 end MkHom
@@ -1113,7 +1118,6 @@ theorem mkHom_f_succ_succ (n : ℕ) :
             (mkHom P Q zero one one_zero_comm succ).f (n + 1),
             (mkHom P Q zero one one_zero_comm succ).comm n (n + 1)⟩).1 := by
   dsimp [mkHom, mkHomAux]
-  induction n <;> congr
 #align cochain_complex.mk_hom_f_succ_succ CochainComplex.mkHom_f_succ_succ
 
 end MkHom
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with · and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -75,7 +75,7 @@ theorem d_comp_d (C : HomologicalComplex V c) (i j k : ι) : C.d i j ≫ C.d j k
   by_cases hij : c.Rel i j
   · by_cases hjk : c.Rel j k
     · exact C.d_comp_d' i j k hij hjk
-    . rw [C.shape j k hjk, comp_zero]
+    · rw [C.shape j k hjk, comp_zero]
   · rw [C.shape i j hij, zero_comp]
 #align homological_complex.d_comp_d HomologicalComplex.d_comp_d
 
@@ -91,8 +91,8 @@ theorem ext {C₁ C₂ : HomologicalComplex V c} (h_X : C₁.X = C₂.X)
   simp only [mk.injEq, heq_eq_eq, true_and]
   ext i j
   by_cases hij: c.Rel i j
-  . simpa only [comp_id, id_comp, eqToHom_refl] using h_d i j hij
-  . rw [s₁ i j hij, s₂ i j hij]
+  · simpa only [comp_id, id_comp, eqToHom_refl] using h_d i j hij
+  · rw [s₁ i j hij, s₂ i j hij]
 #align homological_complex.ext HomologicalComplex.ext
 
 end HomologicalComplex
@@ -188,7 +188,7 @@ theorem Hom.comm {A B : HomologicalComplex V c} (f : A.Hom B) (i j : ι) :
     f.f i ≫ B.d i j = A.d i j ≫ f.f j := by
   by_cases hij : c.Rel i j
   · exact f.comm' i j hij
-  . rw [A.shape i j hij, B.shape i j hij, comp_zero, zero_comp]
+  · rw [A.shape i j hij, B.shape i j hij, comp_zero, zero_comp]
 #align homological_complex.hom.comm HomologicalComplex.Hom.comm
 
 instance (A B : HomologicalComplex V c) : Inhabited (Hom A B) :=
chore: fix grammar 1/3 (#5001)

All of these are doc fixes

Diff
@@ -702,7 +702,7 @@ def mkAux : ∀ _ : ℕ, MkStruct V
     ⟨p.X₁, p.X₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
 #align chain_complex.mk_aux ChainComplex.mkAux
 
-/-- A inductive constructor for `ℕ`-indexed chain complexes.
+/-- An inductive constructor for `ℕ`-indexed chain complexes.
 
 You provide explicitly the first two differentials,
 then a function which takes two differentials and the fact they compose to zero,
@@ -975,7 +975,7 @@ def mkAux : ∀ _ : ℕ, MkStruct V
     ⟨p.X₁, p.X₂, (succ p.flat).1, p.d₁, (succ p.flat).2.1, (succ p.flat).2.2⟩
 #align cochain_complex.mk_aux CochainComplex.mkAux
 
-/-- A inductive constructor for `ℕ`-indexed cochain complexes.
+/-- An inductive constructor for `ℕ`-indexed cochain complexes.
 
 You provide explicitly the first two differentials,
 then a function which takes two differentials and the fact they compose to zero,
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -684,14 +684,15 @@ structure MkStruct where
 variable {V}
 
 /-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
+def MkStruct.flat (t : MkStruct V) :
+    Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0 :=
   ⟨t.X₀, t.X₁, t.X₂, t.d₀, t.d₁, t.s⟩
 #align chain_complex.mk_struct.flat ChainComplex.MkStruct.flat
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁) (s : d₁ ≫ d₀ = 0)
   (succ :
-    ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₁ ⟶ X₀)(d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
-      Σ'(X₃ : V)(d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
+    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₁ ⟶ X₀) (d₁ : X₂ ⟶ X₁), d₁ ≫ d₀ = 0,
+      Σ' (X₃ : V) (d₂ : X₃ ⟶ t.2.2.1), d₂ ≫ t.2.2.2.2.1 = 0)
 
 /-- Auxiliary definition for `mk`. -/
 def mkAux : ∀ _ : ℕ, MkStruct V
@@ -752,13 +753,13 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₁ ⟶ X₀)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0) :
+    (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0) :
     ChainComplex V ℕ :=
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align chain_complex.mk' ChainComplex.mk'
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ'(X₂ : V)(d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
+variable (succ' : ∀ t : ΣX₀ X₁ : V, X₁ ⟶ X₀, Σ' (X₂ : V) (d : X₂ ⟶ t.2.1), d ≫ t.2.2 = 0)
 
 @[simp]
 theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').X 0 = X₀ :=
@@ -809,7 +810,7 @@ variable (P Q : ChainComplex V ℕ) (zero : P.X 0 ⟶ Q.X 0) (one : P.X 1 ⟶ Q.
   (succ :
     ∀ (n : ℕ)
       (p :
-        Σ'(f : P.X n ⟶ Q.X n)(f' : P.X (n + 1) ⟶ Q.X (n + 1)),
+        Σ' (f : P.X n ⟶ Q.X n) (f' : P.X (n + 1) ⟶ Q.X (n + 1)),
           f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f),
       Σ'f'' : P.X (n + 2) ⟶ Q.X (n + 2), f'' ≫ Q.d (n + 2) (n + 1) = P.d (n + 2) (n + 1) ≫ p.2.1)
 
@@ -822,7 +823,7 @@ in `mkHom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.X n ⟶ Q.X n)(f' : P.X (n + 1) ⟶ Q.X (n + 1)),
+      Σ' (f : P.X n ⟶ Q.X n) (f' : P.X (n + 1) ⟶ Q.X (n + 1)),
         f' ≫ Q.d (n + 1) n = P.d (n + 1) n ≫ f
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mkHomAux n).2.1, (succ n (mkHomAux n)).1, (succ n (mkHomAux n)).2⟩
@@ -956,14 +957,15 @@ structure MkStruct where
 variable {V}
 
 /-- Flatten to a tuple. -/
-def MkStruct.flat (t : MkStruct V) : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
+def MkStruct.flat (t : MkStruct V) :
+    Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0 :=
   ⟨t.X₀, t.X₁, t.X₂, t.d₀, t.d₁, t.s⟩
 #align cochain_complex.mk_struct.flat CochainComplex.MkStruct.flat
 
 variable (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂) (s : d₀ ≫ d₁ = 0)
   (succ :
-    ∀ t : Σ'(X₀ X₁ X₂ : V)(d₀ : X₀ ⟶ X₁)(d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
-      Σ'(X₃ : V)(d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
+    ∀ t : Σ' (X₀ X₁ X₂ : V) (d₀ : X₀ ⟶ X₁) (d₁ : X₁ ⟶ X₂), d₀ ≫ d₁ = 0,
+      Σ' (X₃ : V) (d₂ : t.2.2.1 ⟶ X₃), t.2.2.2.2.1 ≫ d₂ = 0)
 
 /-- Auxiliary definition for `mk`. -/
 def mkAux : ∀ _ : ℕ, MkStruct V
@@ -1024,13 +1026,13 @@ then a function which takes a differential,
 and returns the next object, its differential, and the fact it composes appropriately to zero.
 -/
 def mk' (X₀ X₁ : V) (d : X₀ ⟶ X₁)
-    (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
+    (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0) :
     CochainComplex V ℕ :=
   mk X₀ X₁ (succ' ⟨X₀, X₁, d⟩).1 d (succ' ⟨X₀, X₁, d⟩).2.1 (succ' ⟨X₀, X₁, d⟩).2.2 fun t =>
     succ' ⟨t.2.1, t.2.2.1, t.2.2.2.2.1⟩
 #align cochain_complex.mk' CochainComplex.mk'
 
-variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ'(X₂ : V)(d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
+variable (succ' : ∀ t : ΣX₀ X₁ : V, X₀ ⟶ X₁, Σ' (X₂ : V) (d : t.2.1 ⟶ X₂), t.2.2 ≫ d = 0)
 
 @[simp]
 theorem mk'_X_0 : (mk' X₀ X₁ d₀ succ').X 0 = X₀ :=
@@ -1058,9 +1060,9 @@ section MkHom
 variable {V}
 variable (P Q : CochainComplex V ℕ) (zero : P.X 0 ⟶ Q.X 0) (one : P.X 1 ⟶ Q.X 1)
   (one_zero_comm : zero ≫ Q.d 0 1 = P.d 0 1 ≫ one)
-  (succ : ∀ (n : ℕ) (p : Σ'(f : P.X n ⟶ Q.X n)(f' : P.X (n + 1) ⟶ Q.X (n + 1)),
+  (succ : ∀ (n : ℕ) (p : Σ' (f : P.X n ⟶ Q.X n) (f' : P.X (n + 1) ⟶ Q.X (n + 1)),
           f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'),
-      Σ'f'' : P.X (n + 2) ⟶ Q.X (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
+      Σ' f'' : P.X (n + 2) ⟶ Q.X (n + 2), p.2.1 ≫ Q.d (n + 1) (n + 2) = P.d (n + 1) (n + 2) ≫ f'')
 
 /-- An auxiliary construction for `mkHom`.
 
@@ -1071,7 +1073,7 @@ in `mkHom`.
 -/
 def mkHomAux :
     ∀ n,
-      Σ'(f : P.X n ⟶ Q.X n)(f' : P.X (n + 1) ⟶ Q.X (n + 1)),
+      Σ' (f : P.X n ⟶ Q.X n) (f' : P.X (n + 1) ⟶ Q.X (n + 1)),
         f ≫ Q.d n (n + 1) = P.d n (n + 1) ≫ f'
   | 0 => ⟨zero, one, one_zero_comm⟩
   | n + 1 => ⟨(mkHomAux n).2.1, (succ n (mkHomAux n)).1, (succ n (mkHomAux n)).2⟩
chore: review of automation in category theory (#4793)

Clean up of automation in the category theory library. Leaving out unnecessary proof steps, or fields done by aesop_cat, and making more use of available autoparameters.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -305,7 +305,7 @@ def forget : HomologicalComplex V c ⥤ GradedObject ι V where
 just picking out the `i`-th object. -/
 @[simps!]
 def forgetEval (i : ι) : forget V c ⋙ GradedObject.eval i ≅ eval V c i :=
-  NatIso.ofComponents (fun X => Iso.refl _) (by aesop_cat)
+  NatIso.ofComponents fun X => Iso.refl _
 #align homological_complex.forget_eval HomologicalComplex.forgetEval
 
 end
@@ -484,7 +484,8 @@ def isoApp (f : C₁ ≅ C₂) (i : ι) : C₁.X i ≅ C₂.X i :=
 which commute with the differentials. -/
 @[simps]
 def isoOfComponents (f : ∀ i, C₁.X i ≅ C₂.X i)
-    (hf : ∀ i j, c.Rel i j → (f i).hom ≫ C₂.d i j = C₁.d i j ≫ (f j).hom) : C₁ ≅ C₂ where
+    (hf : ∀ i j, c.Rel i j → (f i).hom ≫ C₂.d i j = C₁.d i j ≫ (f j).hom := by aesop_cat) :
+    C₁ ≅ C₂ where
   hom :=
     { f := fun i => (f i).hom
       comm' := hf }
@@ -512,8 +513,7 @@ theorem isoOfComponents_app (f : ∀ i, C₁.X i ≅ C₂.X i)
 #align homological_complex.hom.iso_of_components_app HomologicalComplex.Hom.isoOfComponents_app
 
 theorem isIso_of_components (f : C₁ ⟶ C₂) [∀ n : ι, IsIso (f.f n)] : IsIso f :=
-  IsIso.of_iso (HomologicalComplex.Hom.isoOfComponents (fun n => asIso (f.f n))
-    (by aesop_cat))
+  IsIso.of_iso (HomologicalComplex.Hom.isoOfComponents fun n => asIso (f.f n))
 #align homological_complex.hom.is_iso_of_components HomologicalComplex.Hom.isIso_of_components
 
 /-! Lemmas relating chain maps and `dTo`/`dFrom`. -/
chore: fix typos (#4518)

I ran codespell Mathlib and got tired halfway through the suggestions.

Diff
@@ -705,7 +705,7 @@ def mkAux : ∀ _ : ℕ, MkStruct V
 
 You provide explicitly the first two differentials,
 then a function which takes two differentials and the fact they compose to zero,
-and returns the next object, its differential, and the fact it composes appropiately to zero.
+and returns the next object, its differential, and the fact it composes appropriately to zero.
 
 See also `mk'`, which only sees the previous differential in the inductive step.
 -/
@@ -977,7 +977,7 @@ def mkAux : ∀ _ : ℕ, MkStruct V
 
 You provide explicitly the first two differentials,
 then a function which takes two differentials and the fact they compose to zero,
-and returns the next object, its differential, and the fact it composes appropiately to zero.
+and returns the next object, its differential, and the fact it composes appropriately to zero.
 
 See also `mk'`, which only sees the previous differential in the inductive step.
 -/
feat: port CategoryTheory.Abelian.Projective (#4322)

Co-authored-by: Joël Riou <joel.riou@universite-paris-saclay.fr> Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: int-y1 <jason_yuen2007@hotmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -772,13 +772,33 @@ theorem mk'_X_1 : (mk' X₀ X₁ d₀ succ').X 1 = X₁ :=
 set_option linter.uppercaseLean3 false in
 #align chain_complex.mk'_X_1 ChainComplex.mk'_X_1
 
+
 @[simp]
 theorem mk'_d_1_0 : (mk' X₀ X₁ d₀ succ').d 1 0 = d₀ := by
   change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
   rw [if_pos rfl, Category.id_comp]
 #align chain_complex.mk'_d_1_0 ChainComplex.mk'_d_1_0
 
--- TODO simp lemmas for the inductive steps? It's not entirely clear that they are needed.
+/- Porting note:
+Downstream constructions using `mk'` (e.g. in `CategoryTheory.Abelian.Projective`)
+have very slow proofs, because of bad simp lemmas.
+It would be better to write good lemmas here if possible, such as
+
+```
+theorem mk'_X_succ (j : ℕ) :
+    (mk' X₀ X₁ d₀ succ').X (j + 2) = (succ' ⟨_, _, (mk' X₀ X₁ d₀ succ').d (j + 1) j⟩).1 := by
+  sorry
+
+theorem mk'_d_succ {i j : ℕ} :
+    (mk' X₀ X₁ d₀ succ').d (j + 2) (j + 1) =
+      eqToHom (mk'_X_succ X₀ X₁ d₀ succ' j) ≫
+      (succ' ⟨_, _, (mk' X₀ X₁ d₀ succ').d (j + 1) j⟩).2.1 :=
+  sorry
+```
+
+These are already tricky, and it may be better to write analogous lemmas for `mk` first.
+-/
+
 end Mk
 
 section MkHom
feat: port Algebra.Homology.HomologicalComplex (#3451)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Dependencies 3 + 298

299 files ported (99.0%)
120305 lines ported (99.1%)
Show graph

The unported dependencies are